Спиннинг-диск (Spinning-disk) микроскопия — Конфокальный микроскоп. Конфокальные микроскопы Конфокальный лазерный сканирующий микроскоп

История

В 50-х годах биологам понадобилось увеличить контраст наблюдения меченых флюорохромами объектов в толстых срезах тканей . Для разрешения этой проблемы Марвин Минский , профессор в США, предложил использовать для флуоресцентных микроскопов конфокальную схему. В 1961 г. Минский получил на эту схему патент .

Принцип работы

Конфокальный микроскоп имеет разрешение такое же как и обычный микроскоп и ограничено оно дифракционным пределом .

где длина волны излучения, - числовая апертура объектива, - показатель преломления среды между образцом и объективом, - половина угла, который «захватывает» объектив. В видимом диапазоне разрешение составляет ~ 250 нм (NA=1,45, n=1,51) Однако, в последние годы успешно развиваются схемы микроскопов, которые используют нелинейные свойства флуоресценции образцов. В этом случае достигается разрешение значительно меньшее дифракционного предела и составляет ~ 3-10 нм .

Конфокальный микроскоп создаёт чёткое изображение образца, которое при использовании обычного микроскопа представляется размытым. Это достигается путем отрезания апертурой фонового света идущего из глубины образца, то есть того света, который не попадает на фокальную плоскость объектива микроскопа. В результате изображение получается с контрастом лучшим, чем в обычном оптическом микроскопе.

Изображение представляет собой двумерную (2D) картину.

См. также

Преимущества в биологии перед другими микроскопами

Показатель преломления биологических объектов почти такой же как у стекла, поэтому наблюдение этих объектов, находящийся на поверхности предметного стекла, в обычном микроскопе весьма затруднено. Конфокальный микроскоп, имеющий высокий контраст, даёт две неоценимые возможности: он позволяет исследовать ткани на клеточном уровне в состоянии физиологической жизнедеятельности, а также оценивать результаты исследования (то есть клеточной активности) в четырёх измерениях - высота, ширина, глубина и время.

Примечания

Ссылки

  • Molecular Expressions : Laser Scanning Confocal Microscopy
  • Nikon’s MicroscopyU . Comprehensive introduction to confocal microscopy.
  • Emory’s Physics Department . Introduction to confocal microscopy and fluorescence.
  • The Science Creative Quarterly’s overview of confocal microscopy - high res images also available.
  • Programmable Array Microscope - Confocal Microscope Capabilities.

Wikimedia Foundation . 2010 .

Смотреть что такое "Конфокальный микроскоп" в других словарях:

    У этого термина существуют и другие значения, см. Микроскоп (значения). Микроскоп, 1876 год … Википедия

    Атомно силовой микроскоп Атомно силовой микроскоп (АСМ, англ. AFM atomic force microscope) сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от дес … Википедия

    Общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    - (англ. nitrogen vacancy center) или азото замещённая вакансия в алмазе это один из многочисленных точечных дефектов алмаза. Дефект представляет собой нарушение строения кристаллической решётки алмаза, возникающий при удалении атома… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Мински. В Википедии есть статьи о других людях с такой фамилией, см. Минский. Марвин Ли Мински англ. Marvin Lee Minsky … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

Книги

  • Конфокальная микроскопия и ультрамикроскопия живой клетки , Свищев Георгий Михайлович. Конфокальный микроскоп - это разновидность сканирующего светового микроскопа. При исследовании толстых объектов он дает изображения, свободные от фона, которые вобычных микроскопах создается…

Основная концепция

Конфокальный принцип точка датчика из патента Минсков

Принцип конфокальной микроскопии был запатентован в 1957 году Марвин Мински и стремится преодолеть некоторые ограничения традиционных широкоугольных микроскопов флуоресценции . В обычном (т.е. широкого поля) флуоресцентный микроскоп , весь образец затопляются равномерно свет от источника света. Все части образца в оптическом пути возбуждаются в то же время и в результате флуоресценции детектируют с помощью микроскопа фотодетектора или камер , включая большую несфокусированный фон часть. В противоположность этому, конфокальный микроскоп использует точку подсветки (см функция рассеяния точки) и крошечное отверстие в оптически сопряженной плоскости в передней части детектора, чтобы исключить из фокуса сигнала - название «конфокальной» происходит от этой конфигурации. Как только свет, излучаемый с помощью флуоресценции очень близко к фокальной плоскости можно обнаружить, изображение в оптическом разрешении , в частности, в направлении глубины образца, гораздо лучше, чем у широкого поле микроскопов. Тем не менее, так как большая часть света от образца флуоресценции блокируется на прокол, это повышенное разрешение за счет уменьшенной интенсивности сигнала - так долго воздействия часто требуются. Чтобы компенсировать это падение сигнала после того, как прокол , интенсивность света обнаруживается с помощью чувствительного детектора, как правило, фотоэлектронный умножитель (ФЭУ) или лавинным фотодиодом , превращая светового сигнала в электрический, который записывается с помощью компьютера.

Как только одна точка в образце освещена в то время, 2D или 3D изображений требуется сканирование над регулярной растра (т.е., прямоугольный шаблон параллельных линий сканирования) в образце. Луч сканируют поперек образца в горизонтальной плоскости с помощью одного или более (серво контролируется) осциллирующие зеркала. Этот метод сканирования, как правило, имеет низкую реакционную задержку и скорость сканирования может изменяться. Медленное сканирование обеспечивают лучшее отношение сигнал-шум , что приводит к лучшей контрастности и более высоким разрешением.

Достижима толщина фокальной плоскости определяется главным образом от длины волны используемого света, деленной на числовой апертуры этого объектива , но и оптических свойств образца. Тонкие оптические секционирования возможно делают эти типы микроскопов особенно хороши в 3D визуализации и профилировании поверхности образцов.

Последовательные срезы составляют «Z-стек», который может быть либо обработан определенным программным обеспечением для создания 3D-изображения, или он объединяется в 2D стеку (преимущественно максимальная интенсивность пикселя берутся, другие общие методы включают использование стандартного отклонения или суммирования пикселей).

Конфокальная микроскопия обеспечивает емкость для прямого, неинвазивного, серийного оптического секционирования интактных, толстых и живых особей с минимумом подготовки проб, а также незначительным улучшением в боковом разрешении. Биологические образцы часто обрабатывает флуоресцентные красители , чтобы сделать выбранные объекты видимыми. Однако, фактическая концентрация красителя может быть низкой, чтобы свести к минимуму нарушения биологических систем: некоторые инструменты могут отслеживать отдельные молекулы флуоресцентных. Кроме того, трансгенные методы могут создавать организмы, которые производят свои собственные флуоресцентные молекулы химерных (такие как сплав GFP, зеленого флуоресцентного белка с представляющим интерес белком). Конфокальные микроскопы работают по принципу точечного возбуждения в образце (дифракции ограничено точечные) и обнаружение точки результирующего сигнала флуоресцентного. Обскуры на детекторе обеспечивает физический барьер, который блокирует вне фокуса флуоресценции. Только в фокусе, или центрального пятна диска Эйри, записывается. Растровое сканирование образца в одной точке, в то время допускает тонкие оптические участки должны быть собраны путем простого изменения Z-фокус. Полученные изображения могут быть сложены, чтобы произвести 3D - изображение образца.

Методы, используемые для горизонтального сканирования

Четыре типа конфокальных микроскопов являются коммерчески доступным:

Конфокальные лазерные сканирующие микроскопы использовать несколько зеркала (обычно 2 или 3 сканирований линейно вдоль осей х и у-ось) для сканирования лазера на образец и «descan» изображения через фиксированную обскуру и детектор.

Пользы

CLSM широко используется во многих биологических научных дисциплин, от клеточной биологии и генетики в области микробиологии и биологии развития . Он также используется в квантовой оптики и нано-кристаллической визуализации и спектроскопии.

Биологии и медицины

Пример стопки конфокальной микроскопии изображений, показывающих распределение актиновых филаментов по всей клетке.

Клинический, КЛСМ используется при оценке различных глазных заболеваний, и особенно полезно для получения изображений, качественного анализа и количественной оценки эндотелиальных клеток в роговице . Он используется для локализации и идентификации присутствия нитевидных элементов грибов в роговичной стромы в случаях keratomycosis , что позволяет быстро поставить диагноз и тем самым раннее учреждение окончательной терапии. Исследование методов CLSM для эндоскопических процедур (эндомикроскопия) также показывает обещание. В фармацевтической промышленности, было рекомендовано, чтобы следить за процессом изготовления тонких фармацевтических форм пленки, чтобы контролировать качество и однородность распределения лекарственного средства.

Оптика и кристаллография

CLSM используется в качестве механизма поиска данных в некоторых оптическом хранении данных 3D - системах и помог определить возраст папируса Магдалины .

Варианты и усовершенствование

Улучшение осевого разрешения

Точка распространение функция точечного эллипсоид, несколько раз до тех пор, как это широко. Это ограничивает осевое разрешение микроскопа. Один из методов преодоления этого 4 π микроскопии , где падающий и излучаемый свет или могут мешать как сверху, так и снизу образца, чтобы уменьшить объем эллипсоида. Альтернативная методика конфокальной микроскопии тета . В этой технике конус осветительного света и детектируемый свет расположен под углом друг к другу (наилучшим результатам, когда они перпендикулярны). Пересечение двух форы функций дает гораздо меньший эффективный объем образца. Из этого эволюционировали одного самолета подсветки микроскопа . Дополнительно деконволюции могут быть использованы с использованием экспериментально полученной функции рассеяния точки , чтобы удалить из фокуса света, улучшая контраст в обеих осевых и боковых плоскостях.

Супер разрешение

Есть конфокальной варианты, которые достигают разрешения ниже дифракционного предела, такие как стимулированной эмиссии обедненной микроскопии (STED). Кроме этой техники широкое разнообразие других методов (не конфокальной основе) супер-разрешением доступны как пальмовое, (д) ШТОРМОВАЯ, SIM - карты, и так далее. Все они имеют свои преимущества, такие как простота использования, разрешение и необходимость специального оборудования, буфера или флуорофору.

Низкотемпературный Работоспособность

Для образцов изображений при низких температурах, два основных подхода были использованы, как на основе лазерной сканирующей конфокальной микроскопии архитектуры. Один из подходов заключается в использовании непрерывного потока криостат : только образец находится при низкой температуре и ее оптической адресацией через прозрачное окно. Другой возможный подход заключается в части оптики (особенно объективного микроскопа) в криогенном сосуде Дьюара для хранения . Этот второй подход, хотя и более громоздким, гарантирует лучшую механическую стабильность и позволяет избежать потерь из - за окна.

Изображений

    Частичный профиль поверхности монеты 1-Евро, измеренная с помощью диска Нипкова конфокальной микроскопии.

    Отражение данных для 1-монеты евро.

история

Начало: 1940-1957

Первый конфокальный сканирующий микроскоп был построен Marvin Минсков в 1955 и патент была подана в 1957 году сканирование точки освещения в фокальной плоскости была достигнута путем перемещения стадии. Ни одно научное издание представлено не было, и никакие изображения, сделанные с ним не были сохранены.

Тандем-сканирующий микроскоп

Схема Тандем-сканирующей микроскопии Petran в. Красный бар добавлен, чтобы указать Нипкова-диск.

В 1960 году чехословацкий Моймир Petran медицинский факультет Карлова университета в Пльзене разработала Тандем сканирующая микроскоп, первый Коммерциализированный конфокальной микроскопии. Он был продан небольшой компании в Чехословакии и в Соединенных Штатах Tracor-Северной (позже NORAN) и используется вращающийся диск Нипкова , чтобы генерировать множественные возбуждения и эмиссии микроотверстий.

Патент чехословацкий был подан в 1966 году по Petran и Милан Hadravský, чехословацкого коллеги. Первая научная публикация с данными и изображениями, полученных с этим микроскопом была опубликована в журнале Science в 1967 году, автором которого является М. Дэвид Эггер из Йельского университета и Petran. В примечании к этой статье упоминается, что Petran разработан микроскоп и руководил его строительством, и что он был, частично, «научный сотрудник» в Йельском университете. Второе издание с 1968 описал теорию и технические детали прибора и имел Hadravský и Роберт Галамбос , руководитель группы в Йельском университете, в качестве дополнительных авторов. В 1970 году был выдан патент США. Он был подан в 1967 году.

1969: Первый конфокальной лазерной сканирующей микроскопии

В 1969 и 1971 годах, М. Дэвид Egger и Пол Davidovits из Йельского университета , опубликовал две статьи, описывающие первый конфокальной лазерной сканирующей микроскопии. Это была точка сканера, то есть только один освещение пятна был сгенерирован. Он используется эпи-освещение-отражение микроскопии для наблюдения нервной ткани. В 5 мВт гелий-неоновый лазер с длиной волны 633 нм свет отражался от полупрозрачного зеркала в направлении цели. Цель была простой объектив с фокусным расстоянием 8,5 мм. В отличии от всех предыдущих и наиболее поздних систем, образец сканировали движением этой линзы (цель сканирования), что приводит к перемещению фокальной точки. Отраженный свет вернулся к полупрозрачный зеркалу, передаваемая часть была ориентирована другой линза на точечным обнаружение, за которой фотоэлектронный умножитель был помещен. Сигнал визуализировали с помощью ЭЛТ осциллографа, электронно - лучевой был перенесен одновременно с целью. Специальное устройство позволило сделать Polaroid фотографии , три из которых были показаны в 1971 публикации.

Авторы размышляют о флуоресцентных красителях для исследований в естественных условиях. Они ссылаются на патент Минского, спасибо Стив Бэра, в то время докторант в Альберта Эйнштейна школы медицины в Нью - Йорке , где он разработал конфокальной линии сканирующего микроскопа, предложившего использовать лазер с «микроскопом Мински» и поблагодарить Галамбос, Hadravsky и Petran для дискуссий, ведущих к развитию своего микроскопа. Мотивация для их развития было то, что в Tandem-сканирующей микроскопии только фракция 10 -7 освещающего света участвует в генерации изображения в части глаза. Таким образом, качество изображения не было достаточным для большинства биологических исследований.

1977-1985: Точечные сканеры с лазерами и сканирования сцены

В 1977 году Колин JR Sheppard и Tony Wilson описал конфокальной с эпи-лазера-подсветкой, сканирование стадии и фотоэлектронных умножителей как детекторы. Этап мог перемещаться вдоль оптической оси (Z-ось), что позволяет оптические серийные срезы.

В 1979 году Фред Brakenhoff и его коллеги показали, что теоретические преимущества оптического секционирования и улучшения разрешения действительно достижимо на практике. В 1985 году эта группа стала первой публиковать убедительные снимки, сделанные на конфокальной микроскопии, которые были в состоянии ответить на биологические вопросы. Вскоре после того, как много больше групп начали использовать конфокальной микроскопии, чтобы ответить на научные вопросы, которые до сих пор осталось загадкой из - за технологических ограничений.

В 1983 IJ Cox унд С. Шеппард из Оксфорда опубликовал первую работу в соответствии с которым конфокальный микроскоп, управляемый компьютером. Первый коммерческий лазерный сканирующий микроскоп, этап-сканер SOM-25 был предложен Oxford оптоэлектроники (после нескольких TAKE-кадром, приобретенных BioRad), начиная с 1982 г. Она была основана на конструкции группы Oxford.

Начиная с 1985: Лазерная точка сканеры с сканированием луча

В середине 1980-х годов, Уильям Брэдшоу Амоса и Джона Грэма Уайта и его коллег, работающих в лаборатории молекулярной биологии в Кембридже была построена первая конфокальной луча сканирующего микроскопа. Стадии с образцом не движется, вместо того, чтобы освещенность пятно, что позволяет быстрее получения изображений: четыре изображения в секунду с 512 строк каждая. Сильно преувеличены промежуточные изображения, из - за путем луча длиной 1-2 метров, допускается использование обычной ирисовой диафрагмы как «обскура», с диаметром ~ 1 мм. Первые микрофотографии были приняты при длительном воздействии на пленку, прежде чем был добавлен цифровой фотоаппарат. Дальнейшее усовершенствование позволило масштабирование в подготовку в первый раз. Цейсс примерно в то же время привели к коммерческому CLSM распространяемого шведской компании Зарастро~d. Предприятие было приобретено в 1990 году молекулярной динамики, но в конце концов CLSM прекращено. В Германии, Heidelberg Instruments , основанная в 1984 году, разработал КЛСМ, который был первоначально означало для промышленного применения, а не биологии. Этот документ был передан в 1990 году Leica Lasertechnik . Цейсс уже не-конфокальной летающего пятна лазерного сканирующего микроскопа на рынке, который был повышен до конфокальной. В докладе 1990 года, отметив, «некоторые» производитель confocals списков: Sarastro, технический инструмент, Meridian Instruments, Bio-Rad, Leica, Tracor-северного и Цейс.

В 1989 году Фриц Карл Preikschat , с сыном Ekhard Preikschat, изобрел сканирующий лазерный диод микроскоп для анализа размера частиц. Он и Ekhard Preikschat соучредителем Lasentec коммерциализировать. В 2001 году Lasentec был приобретен Mettler Toledo (NYSE: МПД). Около десяти тысяч систем были установлены по всему миру, в основном в фармацевтической промышленности для обеспечения контроля в месте процесса кристаллизации в больших системах очистки.

  • Двухфотонное возбуждение микроскопия : Несмотря на то, что они используют соответствующую технологию (оба лазерные сканирующие микроскопы), многофотонные флуоресцентные микроскопы не являются строго конфокальными микроскопами. Термин конфокальной возникает из - за наличия диафрагмы в конъюгированной фокальной плоскости (конфокального). Эта диафрагма обычно отсутствует в многофотонных микроскопах.
  • Полное внутреннее отражение флуоресцентный микроскоп (TIRF) о
    конфокальной микроскопии
    • Виртуальный CLSM (Java-основе)
    • анимация и разъяснение по различным типам микроскопов, включая флуоресцентные и конфокальные микроскопы . (Université Paris Sud)

Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.

Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.

Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.

Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.

Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.

Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.

Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.

Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.

Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.

Конфокальная микроскопия - один из современных методов исследования; позволяет проводить прижизненный мониторинг состояния роговицы с визуализацией тканей на клеточном и микроструктурном уровне.

Данный метод в силу оригинальной конструкции микроскопа и его большой разрешающей способности позволяет визуализировать живые ткани роговицы, измерить толщину каждого из её слоён, а также оценить степень морфологических нарушений.

Охарактеризовать морфологические изменения роговицы, возникающие при различных воспалительных и дистрофических её заболеваниях, а также вследствие хирургических вмешательств и воздействия КЛ.

Данные морфологического исследования необходимы, чтобы оценить тяжесть патологического процесса, эффективность лечения и определить тактику ведения больного.

Показания

Воспалительные заболевания роговицы (кератиты).
Дистрофические заболевания роговицы (кератоконус, дистрофия Фукса и др.).
Синдром «сухого глаза».
Состояния после хирургических вмешательств на роговице(сквозной пересадки роговицы, кераторефракционных операций).
Состояния, связанные с ношением КЛ.

Противопоказания

Относительное противопоказание выраженное раздражение глаза на фоне острого воспалительного процесса.

Подготовка


Проведение данного исследования
возможно без применения анестетиков. На объектив линзы конфокального микроскопа помещают каплю иммерсионной жидкости. Это исключает непосредственный контакт линзы с роговицей и сводит к минимуму риск повреждения эпителия.

Методика

Исследование выполняют на конфокальном микроскопе ConfoScan 4 (Nider) с увеличением в 500 раз. Прибор позволяет осмотреть роговицу по всей её толщине.

Размер исследуемой зоны составляет 440x330 мкм, толщина слоя сканирования - 5 мкм. Линзу с каплей геля подводят к роговице до касания и устанавливают так. чтобы толщина слоя иммерсионной жидкости составляла 2 мм. Конструкция прибора позволяет исследовать роговицу в центральной зоне и её парацентральных участках (рис. 7-1; рис. 7-2.).


Интерпретация

Нормальная морфологическая картина роговицы

Передний эпителий состоит из 5-6 слоев клеток. Средняя толщина всего эпителия - приблизительно 50 мкм. По морфологической структуре выделяют следующие слои (изнутри кнаружи): банальный, шиловидных клеток и поверхностный.

Самый внутренний (базальный) слой представлен маленькими плотными цилиндрическими клетками без видимого ядра. Границы базальных клеток чёткие, яркие (рис. 7-3).

Средний слой состоит из 2-3 пластов шиповидных (крылатых) клеток с глубокими инвагинациями, в которые встраиваются выросты соседних клеток. Микроскопически границы клеток довольно хорошо различимы, а ядра могут не определяться или быть нечёткими (рис. 7-4).

Поверхностный слой эпителия представлен одним или двумя пластами полигональных клеток с чёткими границами и гомогенной плотностью. Ядра обычно ярче, чем цитоплазма, в которой также можно различить околоядерное тёмное кольцо (рис. 7-5).

Среди клеток поверхностного слоя различают тёмные и светлые. Повышенная отражательная способность эпителиальных клеток свидетельствует о снижении в них уровня метаболизма и начинающейся их десквамации.

Боуменова мембрана прозрачная структура, не отражающая свет, поэтому в норме при конфокальной микроскопии её визуализация невозможна.

Суббазальное нервное сплетение находится под боуменовой мембраной. В норме нервные волокна выглядят как параллельно идущие на тёмном фоне яркие полосы, контактирующие между собой. Рефлективность (отражательная способность) может быть неравномерной по протяжению волокна (рис. 7-6).

Строма роговицы занимает от 80 до 90% толщины роговицы и состоит из клеточного и внеклеточного компонента. Основные клеточные элементы стромы- кератоциты; составляют примерно 5% объёма.

Типичная микроскопическая картина стромы включает несколько ярких неправильной овальной формы тел (ядер кератоцитов), которые лежат в толще прозрачного тёмно-серого или чёрного матрикса. В норме визуализация внеклеточных структур невозможна из-за их прозрачности. Строма может быть условно разделена на субслои: передний (расположен непосредственно под боуменовой мембраной и составляет 10% толщины стромы), переднесредний, средний и задний.

Средняя плотность кератоцитов выше в передней строме, постепенно их количество уменьшается по направлению к задним слоям. Плотность клеток передней стромы почти в два раза больше, чем клеток задней стромы (если плотность клеток передней стромы принять за 100%, то плотность клеток задней составит около 53,7%). В передней строме ядра кератоцитов имеют округлую бобовидную форму, а в задней овальную и более вытянутую (рис. 7-7.7-8).


Ядра кератоцитов могут различаться по яркости. Различная способность отражать свет зависит от их метаболического состояния. Более яркие клетки принято считать активированными кератоцитами («стрессовыми» клетками), деятельность которых направлена на поддержание внутреннего гомеостаза роговицы. В норме и поле зрения встречаются единичные активированные клетки (рис. 7-9).

Нервные волокна в передней строме роговицы визуализируются в виде ярких гомогенных полос, нередко образующих бифуркации (рис. 7-10).

Десцеметова мембрана в норме прозрачна и не визуализируется при конфокальной микроскопии.

Задний эпителий представляет собой монослой гексагональных или полигональных плоских клеток с равномерно светлой поверхностью на фоне чётких тёмных межклеточных границ (рис. 7-11).

В приборе заложена возможность мануального или автоматического подсчёта плотности клеток, их площади и коэффициента вариабельности.

Патологические изменения строения роговицы

Кератоконус характеризуется значительными изменениями в переднем эпителии и строме роговицы.

Передний эпителий. Обнаруживают различные варианты эпителиопатии (рис. 7-12).

Конфокальная микроскопия — один из методов оптической микроскопии, обладающий значительным контрастом по сравнению с микроскопами классической схемы за счет использования диафрагмы, отсекающей поток фонового рассеяного света. В конфокальном микроскопе в каждый момент времени регистрируется изображение одной точки объекта, а полноценное изображение строится путем сканирования (движения образца или перестройки оптической системы). Для того, чтобы регистрировать свет только от одной точки после объективной линзы располагается диафрагма малого размера таким образом, что свет, испускаемый анализируемой точкой, проходит через диафрагму и будет зарегистрирован, а свет от остальных точек в основном задерживается диафрагмой.

Повышение контраста изображения также достигается за счет того, что осветитель создает не равномерную освещенность поля зрения, а фокусирует свет в анализируемую точку. Это может достигаться расположением второй фокусирующей системы за образцом, но при этом требуется, чтобы образец был прозрачным. Кроме того, объективные линзы обычно сравнительно дорогие, поэтому использование второй фокусирующей системы для подсветки мало предпочтительно. Альтернативой является использование светоделительной пластинки, так чтобы и падающий и отраженный свет фокусировались одним объективом. Такая схема к тому же облегчает юстировку.

Уменьшение отверстия в диафрагме приводит к уменьшению толщины оптического слоя, что повышает контрастность изображения, однако при этом падает его яркость, что требует использования высокочувствительных регистрирующих систем и в процессе исследования заставляет идти на компромисс между яркостью и контрастом получаемого изображения.

Наиболее часто встречающейся задачей для конфокальной микроскопии, благодаря ее высокому разрешению и контрасту, является изучение структуры клеток и их органелл, например, цитоскелета, ЭПР, лизосом, митохондрий, ядра, хромосом и даже генов. Исследуется также колокализация в клетке двух и более веществ. Еще одна задача - исследование динамических процессов, происходящих в живых клетках. Например, клеточного транспорта биологически-активных соединений, изменений концентрации и распределения ионов кальция. Записав в памяти компьютера серию оптических срезов, можно провести объемную реконструкцию объекта и получить его трехмерное изображение, не используя трудоемкую методику изготовления и фотографирования серийных гистологических срезов.

Новыми перспективными направлениями являются методики FRAP - Fluorescence Recovery After Photobleaching (Восстановление флуоресценции после фотовыжигания) и FRET - Fluorescence Resonance Energy Transfer (Передача энергии посредством флуоресцентного резонанса).

Глоссарий:

FRAP применяется для исследования подвижности биоорганических молекул посредством инициации фотохимического разложения флуорохрома в зоне облучения и последующего его рассоединения с молекулами. После выжигания молекулы с флуорохромом из необлученной зоны движутся вследствие диффузии в облученную зону образца. По времени нарастания в ней флуоресценции можно судить о подвижности молекул.

FRET применяется для определения расстояния между молекулами разных типов, их окружения и взаимодействия. Молекулы метятся двумя флуорохромами со спектром испускания донора, перекрывающимся со спектром поглощения акцептора. Энергия от донора к акцептору передается на малых расстояниях (несколько нм) в результате резонанса между энергетическими уровнями, а его вероятность зависит от расстояния между молекулами. Затем акцептор излучает энергию в видимой области спектра, которая регистрируется конфокальным микроскопом.

Двухфотонная (мультифотонная) микроскопия - Two Photon (Multiphoton) Microscopy - Методика, производная от лазерной сканирующей конфокальной микроскопии, при которой возбуждение флуорохромов осуществляется лазерным излучением инфракрасного или длинноволнового видимого диапазона, плотность которого удваивается или даже утраивается в месте фокусировки на образце. Флуорофоры образца переводятся в возбужденное состояние двумя или тремя длинноволновыми фотонами, что эквивалентно возбуждению одним коротковолновым фотоном. Например, возбуждение двумя или тремя фотонами с длиной волны 900 нм эквивалентно возбуждению одним фотоном с длиной волны 450 или 300 нм. Мультифотонная микроскопия обеспечивает более глубокое проникновение в толщу тканей и не требует наличия конфокальной микродиафрагмы, так как ее флуоресценция возникает строго в фокальной плоскости.

Акусто-оптический перестраиваемый фильтр (AOTF) - Acousto- Optic Tunable Filter (AOTF) - Фильтрующее устройство, использующее звуковые колебания для модулирования длины волны или интенсивности света, испускаемого лазером или некогерентным источником света (в первую очередь дуговыми лампами). Фильтр состоит из специализированного кристалла (оксид теллура или кварц), зажатого с двух сторон акустическими излучателем и поглотителем для наведения в кристалле стоячих акустических волн с переменными зонами высокого и низкого преломления. Если поляризованный или неполяризованный свет проходит через фильтр, кристалл воздействует на него как дифракционная решетка, отклоняющая проходящий луч. Для изменения периода дифракционной решетки выбираются характерные длины стоячих волн, получаемые в результате изменения звуковых колебаний, подводимых к кристаллу.

Полосовой фильтр - Bandpass Filter - фильтр, пропускающий определенный диапазон (полосу) длин волн ослабляя при этом волны большей и меньшей длины, чем у пропускаемых. Длина волны в середине пропускаемой полосы обычно называется средней (английская аббревиатура CWL). Эффективная полоса пропускания измеряется шириной зоны, пропускающей половину от максимума падающего света, которая еще называется полосой половинного пропускания (аббревиатуры FWHM и HBW). В флуоресцентной микроскопии полосовые фильтры чаще используются в тракте возбуждения и реже в качестве пороговых (барьерных) фильтров.

Светоделитель - Beamsplitter - Оптическое устройство, используемое для разделения падающего светового луча на две или более составляющих, каждые из которых проецируются в различных направлениях. Для выполнения каких-либо определенных условий светоделители бывают различных конфигураций. В окулярных блоках оптических микроскопов используются призматические светоделители для одновременного проецирования изображения в окуляры и фотокамеру (цифровую камеру). Для получения линейно поляризованного света применяются поляризующие светоделители из природного кварца - материала с двойным преломлением. В флуоресцентной микроскопии для отражение волн возбуждения обратно к источнику и пропускания более длинноволнового вторичного флуоресцентного излучения к окулярам и детектору в качестве светоделителей используются дихроматичные (дихроичные) зеркала.

Холодное зеркало - Cold Mirror - Специализированный дихроматичный интерференционный фильтр, который в очень широком диапазоне температур отражает весь видимый спектр, но очень эффективно пропускает волны в инфракрасной области. Аналогично горячим зеркалам холодные могут быть разработаны для отражения лучей, падающих под углами от нуля до 45 градусов и представлять собой многослойные диэлектрические покрытия наподобие интерференционных фильтров. Холодные зеркала могут использоваться в качестве дихроматических светоделителей в лазерных системах для отражения видимого света и пропускания инфракрасного.

Дихроматичный светоделитель (дихроичное зеркало) - Dichromatic Beamsplitter (Dichroic Mirror) - Комбинация интерференционных фильтров/зеркал обычно применяемая в наборах фильтров для флуоресцентной микроскопии для получения четко определяемого перехода между пропускаемыми и отраженными длинами волн. Дихроматичное зеркало, наклоненное под углом 45 градусов к падающему свету и испускаемому излучению, отражает коротковолновое излучение возбуждения под углом 90 градусов на образец и пропускает более длинноволновое излучение от образца на окуляры и детектор. Дихроматичные зеркала для флуоресцентной микроскопии, изготовленные с использованием тонких интерференционных пленок способны отразить до 90 % возбуждающего излучения, одновременно пропуская до 90 % полосы флуоресцентного излучения. Дихроматичные зеркала обычно являются центральным (основным) элементом в трех видах фильтров (возбуждения, барьерных и дихроматичных зеркал), находящихся в составе блока флуоресцентных оптических фильтров.

Скат фильтра - Filter Slope - Скат оптического фильтра - это характеристика профиля фильтра в области перехода от запирания к пропусканию. В целом, скат фильтра характеризуется длиной волны, на которой фильтр демонстрирует определенный коэффициент пропускания и крутизну характеристики в этом месте. Два различных фильтра могут иметь одни и те же частоты среза, но совершенно разные уровни запирания и скаты. Фильтры с очень крутыми скатами имеют узкую полосу пропускания, в то время как пологие скаты означают широкую полосу.

Полная ширина на половине максимума - Full Width at Half Maximum (FWHM) - Диапазон длин волн пропускаемых стеклянным или интерференционным фильтром описывается параметром, известным как полная ширина на половине максимума (FWHM). Границы среза определяются как наименьшая и наибольшая длины волн, пропускаемые фильтром на уровне 50% от максимума, а средняя длина волны (CWL или СДВ) представляет собой среднее арифметическое от всех длин волн внутри диапазона. Например, величина FWHM, равная 40 означает, что ширина пропускаемого диапазона волн составляет 40 нм, причем значение СДВ (CWL) может лежать где угодно от ультрафиолетовой до инфракрасной частей спектра. Во многих текстах FWHM может обозначаться как половинная полоса пропускания (half bandwidth, HBW).

Видеокамеры ISIT - Intensifier Silicon- Intensifier Target (ISIT) Camera - Видеокамеры, предназначенные для работы при низком уровне освещения, как например в флуоресцентной микроскопии образцов с очень низким квантовым выходом. Эти камеры как правило включают в себя SIT - трубку (с диодной матрицей) дополненную усилителем изображения в комбинации с волоконной оптикой на первой ступени усиления света.

Ближнепольная сканирующая оптическая микроскопия (БСОМ ) - Near- Field Scanning Optical Microscopy (NSOM) - Ближнепольное изображение получается при размещении оптического зонда (световода) субмикронного размера на чрезвычайно близком расстоянии от изучаемого объекта, а свет пропускается через небольшую диафрагму на конце зонда. Под ближним полем понимается зона над поверхностью изучаемого объекта размером меньше длины волны падающего света. В пределах ближнего поля затухающий свет не ограничен дифракцией, и возможно получение информации относительно объектов нанометрового порядка. Это явление позволяет получать изображения за пределами дифракционного барьера и проводить спектроскопию образцов, недостижимую средствами обычной оптической микроскопии.

Поделиться: