Индивидуальный проект по физике. Интересные темы исследовательских проектов по физике

«… Проектное обучение поощряет и усиливает
истинное учение со стороны учеников,
расширяет сферу субъективности в процессе самоопределения,
творчества и конкретного участия …»
В. Гузеев

(Презентация 1)

Сегодня в общеобразовательных учреждениях стали активно освещать вопрос использования исследовательской деятельности, как педагогами, так и учащимися. Человек, обладающий элементарными навыками научно – исследовательской работы, сможет применить и развить их в различных областях деятельности. Для учащихся навыки научно – исследовательской деятельности – это большое подспорье при поступлении в ВУЗЫ, участие в научных конференциях, семинарах, олимпиадах. Однако, к сожалению, опыт показывает, что не все школьники владеют навыками исследовательского подхода в решении различных вопросов, многие не умеют писать, рефераты, доклады, проекты, составлять тезисы и т.д. Наша задача, дать определенные навыки и умения в этом направлении. Методика использования исследовательской деятельности представляет собой умение владеть экспериментальными методами и предполагает поэтапное, с учетом возрастных способностей учащихся целенаправленное формирование всех компонентов научно – исследовательской культуры школьника:

  • Мыслительных умений и навыков (анализ и выделение главного; сравнение; обобщение и систематизация; определение объяснение понятий, конкретизация; доказательство и опровержение; умение видеть противоречие);
  • Умений и навыков работы с книгой и другими источниками информации;
  • Умений и навыков, связанных с культурой устной и письменной речи;
  • Специальных исследовательских умений и навыков.

Все эти умения и навыки исследовательской деятельности я формирую, используя метод проектов, где отрабатывается методика исследовательской деятельности. Что бы сформулировать цели и задачи выбрать главное из большого объема информации, систематизировать и конкретизировать, всему этому учу ребят на консультациях при подготовке и выполнении проектов. (слайд 2)

Рисунок на данном слайде отображает основные этапы последовательности выполнения работы по данной теме.

Выбираю тему урока, формулирую цели и задачи, мотивирую актуальность темы, в которой на основе экспериментальных заданий, придем к конкретным выводам. Изучение теоретического материала, эксперимент, проекты ребят по выбранному экспериментальному заданию, дают возможность мне, как учителю, и ученикам провести интересный, захватывающий урок.

Что такое проект, как исследовательская работа. Понятие «Метод проектов»

По определению проект - это совокупность определенных действий, документов, предварительных текстов, замысел для создания реального объекта, предмета, создания разного рода теоретического продукта. Это всегда творческая деятельность. (слайд 3)

Проектный метод в школьном образовании рассматривается как некая альтернатива классно-урочной системе. Современный проект учащегося - это дидактическое средство активизации познавательной деятельности, развития креативности и одновременно формирования определенных личностных качеств.
Метод проектов - педагогическая технология, ориентированная не на интеграцию фактических знаний, а на их применение и приобретение новых. Активное включение школьника в создание тех или иных проектов дает ему возможность осваивать новые способы человеческой деятельности в социо-культурной среде.
Метод проекта – это одна из личностно-ориентированных технологий, в основе которой лежит развитие познавательных навыков учащихся, умений самостоятельно конструировать свои знания, ориентироваться в информационном пространстве, развитие критического и творческого мышления.

Цели и задачи проектно-исследовательского метода. (слайд - 4)

Основной целью данного метода является развитие свободной творческой личности ребенка, которое определяется задачами развития и задачами исследовательской деятельности детей.

Задачи развития: (слайд 5)

  • обеспечение психологического благополучия и здоровья детей;
  • развитие познавательных способностей;
  • развитие творческого воображения;
  • развитие творческого мышления;
  • развитие коммуникативных навыков.

Задачи исследовательской деятельности : (слайд 6)

  • формирование предпосылок поисковой деятельности, интеллектуальной инициативы;
  • развитие умения определять возможные методы решения проблем с помощью взрослого;
  • формирование умения применять данные методы, способствующие решению поставленной задачи, с использованием различных вариантов;
  • развитие желания пользоваться специальной терминологией, ведение конструктивной беседы в процессе совместной исследовательской деятельности.

Сущность исследовательской деятельности, как составная часть учебных проектов . Слайд №7
Учебные исследования, проводимые школьниками в рамках учебных проектов, могут нести объективное новое знание прикладного характера. Одна из важных задач общеобразовательной школы состоит в том, чтобы сформировать у учащихся умения, позволяющие им активно включаться в творческую, исследовательскую деятельность. Практика работы убеждает, что исследовательская деятельность может быть освоена только в действии и это действие должен направлять учитель.

Основные этапы, которые я строго соблюдаю при выполнении урока – эксперимента и подготовке проектов:

а) выделение внутреннего учебного материала; (проблемная ситуация)

б) организация целесообразной деятельности; (поиск способов решения, исследовательская, поисковая практика, оформление результатов)

в) обучение как непрерывная перестройка жизни и поднятие ее на высшие ступени (защита своего проекта).

Деятельность с детьми, в том числе и обучение, стараюсь строить с учетом их интересов, потребностей, основываясь на личном опыте ребенка.

Программа в методе проектов строится как серия взаимосвязанных моментов, вытекающих из тех или иных задач. Ребята должны научиться строить свою деятельность совместно с другими ребятами, найти, добыть знания, необходимые для выполнения того или иного проекта, таким образом, разрешая свои жизненные задачи, строя отношения друг с другом, познавая жизнь, ребята получают необходимые для этой жизни знания, причем самостоятельно, или совместно с другими в группе, концентрируясь на живом и жизненном материале, учась разбираться путем проб в реалиях жизни.

Основные требования, которые я строго соблюдаю, используя метод проектов в исследовательской работе.

1. Наличие значимой в исследовательском, творческом плане проблемы/задачи, требующей интегрированного знания, исследовательского поиска для ее решения;

2. Практическая, теоретическая, познавательная значимость предполагаемых результатов

3. Самостоятельная (индивидуальная, парная, групповая) деятельность учащихся.

4. Определение конечных целей совместных/индивидуальных проектов;

5. Определение базовых знаний из различных областей, необходимых для работы над проектом.

6. Структурирование содержательной части проекта (с указанием по-этапных результатов).

7. Использование исследовательских методов : слайд 8

  • определение проблемы, вытекающих из нее задач исследования;
  • выдвижение гипотезы их решения, обсуждение методов исследования;
  • оформление конечных результатов;
  • анализ полученных данных;
  • подведение итогов, корректировка, выводы (использование в ходе совместного исследования метода "мозговой атаки", "круглого стола", статистических методов, творческих отчетов, просмотров, т.д.).

Если не владеешь, достаточно свободно исследовательскими, проблемными, поисковыми методами, умением вести статистику, обрабатывать данные, не владея определенными методами различных видов творческой деятельности, трудно говорить о возможности успешной организации проектной деятельности учащихся. Это как бы предварительное условие успешной работы по методу проектов. Кроме того, необходимо владеть и технологией самого проектного метода. Самый сложный момент при введении в учебный процесс исследовательских проектов - организация этой деятельности, а особенно - подготовительный этап. Учителю при планировании на учебный год предстоит выделить ведущую тему (раздел) или несколько тем (разделов), которые будут «вынесены на исследовательское проектирование».

Четкость организации данной деятельности определяется четкостью и конкретностью постановки цели, выделением планируемых результатов, констатацией исходных данных. Весьма эффективное применение небольших методических рекомендаций или инструкций, где указываю необходимую и дополнительную литературу для самообразования, требования к качеству проекта, формы и методы количественной и качественной оценки результатов.

Можно выделить алгоритм проектирования или по другому поэтапное разделение деятельности. (слайд 9)

Этапы выполнения проекта.

При выполнении проекта качественно меняется роль учителя и ученика. Они различны на разных этапах проектирования. Это можно более наглядно увидеть в таблице №1 , которая представлена в приложении 1 .

Роль учителя при выполнении проекта (слайд 11)

Самое сложное для учителя в ходе проектирования - это роль независимого консультанта. Трудно удержаться от подсказок, особенно если вижу, что учащиеся выполняют что-то неверно. Но важно в ходе консультаций только отвечать на возникающие у школьников вопросы, но иногда я отступаю от этой строгой методики на начальном этапе изучения физики. Почему? Да потому что учащимся трудно: (слайд 12)

  • намечать ведущие и текущие (промежуточные) цели и задачи;
  • искать пути их решения, выбирая оптимальный при наличии альтернативы;
  • осуществлять и аргументировать выбор;
  • предусмотреть последствия выбора;
  • действовать самостоятельно (без подсказки);
  • сравнивать полученное с требуемым;
  • объективно оценивать процесс (саму деятельность) и результат проектирования.
  • изготовление проекта в виде презентации , реферата , буклета - как правило, многокрасочное издание, отпечатанное на одном листе, сфальцованное любым способом в два и более сгибов (гармошкой, дельтообразно, с поперечным фальцем и т.д.).
  • Плакат - чистовое издание большого формата,

Я, в своей работе, отдаю предпочтение подготовке реферата, буклета, презентации, очень редко – веб - странички.

Роль учащихся в выполнении проекта

Меняется и роль учащихся в учении: они выступают активными участниками процесса. Деятельность в рабочих группах помогает им научиться работать в «команде». При этом происходит формирование такого конструктивного критического мышления, которому трудно научить при обычной «урочной» форме обучения. У учащихся вырабатывается свой собственный взгляд на информацию, и уже не действует оценочная форма: «это верно, а это - неверно». Школьники свободны в выборе способов и видов деятельности для достижения поставленной цели, им никто не говорит, как и что необходимо делать. Даже неудачно выполненный проект также имеет большое положительное педагогическое значение. На этапе самоанализа (5 этап), а затем защиты (6 этап) учитель и учащиеся самым подробным образом анализируют логику, выбранную проектировщиками, причины неудач, последствия деятельности и т.д. понимание ошибок создает мотивацию к повторной деятельности, формирует личный интерес к новому знанию, так как именно неудачно подобранная информация создала ситуацию «неуспеха». Подобная рефлексия позволяет сформировать адекватную оценку (самооценку) окружающего мира и себя в этом мире.

Но нужно тактично подойти к анализу работы, показать ученику, что он может выполнить на следующий год новую работу, которая ему будет интересной, а я тебе помогу.

Выбор тематики проектов в разных ситуациях может быть различным. В одних случаях эта тематика может формулироваться специалистами органов образования в рамках утвержденных программ. В других, выдвигаться учителями с учетом учебной ситуации по своему предмету, естественных профессиональных интересов, интересов и способностей учащихся. В третьих, тематика проектов может предлагаться и самими учащимися, которые, естественно, ориентируются при этом на собственные интересы, не только чисто познавательные, но и творческие, прикладные.

Тематика проектов может касаться какого-то теоретического вопроса школьной программы с целью углубить знания отдельных учеников по этому вопросу, дифференцировать процесс обучения. Чаще, однако, темы проектов, особенно рекомендуемые органами образования, относятся к какому-то практическому вопросу, актуальному для практической жизни и вместе с тем, требующему привлечения знаний учащихся не по одному предмету, а из разных областей, их творческого мышления, исследовательских навыков.

Таким образом, достигается вполне естественная интеграция знаний.

Виды исследовательских проектов: (слайд 13) Таблица №2 (приложение 2)

Планирование учебного проекта

В начале учебного года, когда составляю календарно тематическое планирование, я выбираю учебную тему проекта, например “Агрегатные состояния вещества. Тепловые переходы ” – 8 класс. Проект относится китоговым – повторительно – обобщающим, когда по результатам его выполнения оценивается освоение учащимися определенного учебного материала. Рассчитан он на два учебных часа. Первоначально создаю свой, учительский проект. Тема его звучит необычно, загадочно – «Чудеса в решете». Он краток, в нем формулирую такие вопросы:

  • Основополагающие вопросы - самые абстрактные в цепи вопросов и служат всеобъемлющей структурой для нескольких разделов – «Круговорот воды в природе – это реальность или сказка?»
  • Проблемные или вопросы учебной темы - задаваемые в рамках одной дисциплины, помогают исследовать различные стороны одного основополагающего вопроса – «Изменится ли мир, если не будут существовать агрегатные переходы вещества?»
  • Частные вопросы – цели и задачи, вопросы, которые основываются на фактах.

На данном этапе определенную трудность представляет формулирование основополагающих, проблемных вопросов и частных вопросов . Давайте разберемся, что это за вопросы и для чего они нужны. Они обязательно должны быть сформулированы в любой презентации учителя, если мы работаем с методом проектов.

После обсуждения основополагающего и проблемного вопроса с учениками я кратко знакомлю, учащихся с различными тепловыми переходами, что тепловых переходов в природе не четыре, а шесть. Зная способности детей, умение работать с необходимыми программами, рекомендую им выбрать тему проекта. И начинаем работу, используя ранее созданную мной презентацию учителя. На консультациях рисуем слайды на бумаге. Обсуждаем их, красиво или некрасиво, какие цвета выбрать, как расположить их на слайде. Какую анимацию применить. Идет отбор материала. Выделение главных мыслей и содержания, которое кратко необходимо выложить на слайд. Для этого демонстрирую презентации, взятые с компакт диска Intel® «Обучение для будущего». (презентация 2)

Полную методику выполнения исследовательского проекта продемонстрирую на примере: исследовательский проект - «Сила трения» седьмой класс» (приложение 3). В начале учебного года, когда редактирую календарно тематические планы, для себя отмечаю, что по теме сила трения и ее применении, приготовим исследовательский проект. За месяц до данной темы, рассказываю учащимся о таком уроке и предлагаю им темы проектов, по которым они сами выбирают форму отчета, веб – странички, буклеты, небольшие презентации, которые они должны приготовить. Ребята сами, либо с выбранными друзьями по классу, либо с родителями готовят этот отчет. Список вопросов вывешиваю в кабинете. (слайд 14) Они самостоятельно выбирают темы, формируют группы. И начинается работа к этому уроку. Консультации совмещаю с занятиями кружка «Юный информатик». Мой проект, как учителя, стоит во главе данного исследовательского проекта. Проекты с ребятами к этому уроку готовила в течении двух лет. Часть проектов была выполнена в первый год – 2004г, а следующие, учебный год – 2005, уже с другими ребятами закончили этот проект. Посмотрите, что у нас получилось. Демонстрирую проект по теме «Сила трения». (слайд 13) (презентация 3)

Кратко расскажу и о другом проекте:

Вводный, перед изучением нового материала – «Атом. Строение атома» -11 класс. После курсов: - «Работа в программе Intel® «Обучение для будущего», администрация РОО, а это был 2004 год, обратилась с просьбой, показать директорам школ района работу в этой программе. И мы с учениками 11 класса ровно месяц по три дня в неделю сидели за тремя компьютерами, и готовили вводный проект к теме: «Атом. Строение атома». Создала свой проект, который позволил сконцентрировать внимание учащихся на главной цели проектного урока:

Главная задача урока : рассматривая исторический материал по ядерной физике, найти ответ на вопрос – ядро, что это за структура.

Цели урока:

  • От простого к сложному.
  • Каковы результаты опытов Резерфорда?
  • История открытия нейтрона.
  • Протонно – нейтронная модель строения атома.

Основополагающий вопрос - ядро - ты загадка или явь?

Проект состоит из трех частей:

  • Первая часть звучит так – «от простого к сложному»;
  • Вторая часть – «опыты Резерфорда и его результаты»;
  • Третья часть – «протонно-нейтронная модель строения атома».

В своей работе каждая группа кратко, выделяя главные моменты, представляла суть научных экспериментов их результаты. Самостоятельно обосновывали и делали выводы. В дальнейшем при изучении и раскрытии этой темы части данного проекта позволяли изучать данную тему или закреплять ее при решении задач. Этот проект я больше не редактировала. Это как память о начале моей работы по этому направлению. Посмотрите, что у нас получилось. (слайд 13) (презентация 4)

Потом были проекты и для молодых специалистов, завучей школ, физиков, математиков. В феврале месяце 2011 года для учителей физиков района показала обобщающий исследовательский проект «Агрегатные состояния вещества. Тепловые переходы» 8 класс. Это фотографии с проектного урока, который я давала своим коллегам по предмету. (слайд № 15 – 17) При выполнении проектной деятельности стандартно создаются: презентация и буклет проекта, (слайд № 18- 19) методические и дидактические материалы.

Вывод: преимущества, которые я вижу при данной работе:

  • энтузиазм в работе, заинтересованность детей, связь с реальной жизнью, выявление лидирующих позиций ребят, научная пытливость, умение работать в группе, самоконтроль, лучшая закрепленность знаний, дисциплинированность;
  • развитие познавательных, творческих навыков учащихся, умений самостоятельно конструировать свои знания, умений ориентироваться в информационном пространстве, развитие критического мышления;
  • Развитие самостоятельной деятельности учащихся - индивидуальную, парную, групповую, которую учащиеся выполняют в течение определенного отрезка времени. Этот подход органично сочетается с групповым подходом к обучению;
  • решение какой-то проблемы, предусматривающей, с одной стороны, использование разнообразных методов, с другой интегрирование знаний, умений из различных областей науки, техники, технологии, творческих областей;

Проектно-исследовательская деятельность позволяет мне : (слайд 20)

  • Побудить интерес учеников к школьному предмету;
  • обучить детей находить некую значимую для них проблему и решать её путем творческого поиска и применения интегрированного знания;
  • подвести ребят к осмыслению значимости предполагаемых результатов в практической, творческой и познавательной деятельности;
  • развить творческие, исследовательские способности и применить их на практике;
  • научить детей алгоритму выполнения этапов проекта;
  • создать условия для самостоятельной деятельности учащихся в ситуации выбора;
  • правильность, грамотность речи ученика, разнообразие тона голоса

Хочется закончить свое выступление словами (слайд 21)

«...Для того, чтобы усовершенствовать ум,
надо больше размышлять, чем заучивать»
Р.Декарт

Если в учебном году разработаете и выполните один исследовательский проект, это замечательно. Творите, если у вас есть желание. А дети получать определенные навыки работы с проектами, и может быть кто – то, когда - то скажет вам большое спасибо за это.


Приведенные ниже темы исследовательских работ по физике являются примерными, их можно брать за основу, дополнять, расширять и изменять по собственному усмотрению, в зависимости от собственных интересных идей и увлечений. Занимательная тема исследования поможет ученику углубить свои знания по предмету и окунуться в мир физики.

  • Темы исследовательских проектов по физике 5 класс

  • Темы исследовательских проектов по физике 6 класс

  • Темы исследовательских проектов по физике 7 класс
Любые темы проектов по физике по фгос можно выбрать из списка перечисленных тем для любого класса общеобразовательной школы и раздела физики. В дальнейшем, руководитель проводит консультации для более точного определения темы проекта. Это поможет ученику сконцентрироваться на самых важных аспектах исследования.

На страничке можно перейти по ссылкам на интересные темы проектов по физике для 5 класса, 6 класса, 7 класса, 8 класса, 9 класса, 10 и 11 класса и темы для старших классов на свет, оптику, световые явления и электричество , на темы проектов по ядерной физике и радиации .


  • Темы исследовательских проектов по физике 8 класс

  • Темы исследовательских проектов по физике 9 класс

  • Темы исследовательских проектов по физике 10 класс

  • Темы исследовательских проектов по физике 11 класс
Представленные темы исследовательских работ по физике для 5, 6, 7, 8, 9, 10 и 11 класса будут интересны школьникам, которые увлекаются биографией физиков, любят проводить эксперименты, паять, не равнодушны к механике, электронике и другим разделам физики. Приобретённые навыки станут не только основой для последующей исследовательской деятельности, но и пригодятся в быту. К данным разделам тем проектных работ по физике можно перейти по ссылкам ниже.

Темы исследовательских работ на свет, оптику, электричество, ядерную физику



  • Интересные темы исследовательских работ по физике

  • Темы исследовательских работ на свет и оптику

  • Темы исследовательских работ на электричество

  • Темы исследовательских работ по ядерной физике

  • Темы для исследовательских работ по астрономии
(откроются в новом окне )

Помимо вышеупомянутых разделов с темами проектных работ по физике рекомендуем школьникам просмотреть общие и довольно актуальные и интересные темы проектов по физике , перечисленные ниже на данной странице нашего сайта. Предложенные темы являются общими и могут быть использованы на разных образовательных уровнях.

Темы проектов по физике (общие темы)

А.Д. Сахаров – выдающийся ученый и правозащитник современности.


Авиационные модели свободного полета.
Автожиры
Агрегатные состояния вещества.
Актуальные проблемы физики атмосферы.
Акустический шум и его воздействие на организм человека.
Алфёров Жорес Иванович.
Альберт Эйнштейн - парадоксальный гений и "вечный ребенок".
Анализ отказов микросборки .
Андронный коллайдер: миф о происхождении Вселенной.
Анизотропия кристаллов
Анизотропия физических свойств монокристаллов.
Аномальные свойства воды
Античная механика
Аристотель - величайший ученый древности.
Артериальное давление
Архимед - величайший древнегреческий математик, физик и инженер.
Аспекты влияния музыки и звуков на организм человека.
Атмосферное давление - помощник человека.
Атмосферное давление в жизни человека .
Аэродинамика на службе человечества
Аэродинамика полосок бумаги, или «И все-таки она вертится!»
Аэродинамические трубы.
Баллистическое движение.
Батисфера
Биолюминесценция
Биомеханика кошки.
Биомеханика человека
Биомеханические принципы в технике.
Бионика. Технический взгляд на живую природу.
Биоскафандр для полета на другие планеты.
Биофизика человека
Биофизика. Колебания и звуки
Бумеранг
В небесах, на земле и на море. (Физика удивительных природных явлений).
В погоне за циклом Карно.
В чем секрет термоса .
В.Г. Шухов – великий русский инженер.
В.К. Рентген – открытия, жизненный путь.
Вакуум на службе у человека
Вакуум. Энергия физического вакуума.
Введение в физику черных дыр.
Вертикальный полет
Ветер как пример конвекции в природе.
Ветер на службе у человека
Взаимные превращения жидкостей и газов. Фазовые переходы.
Взаимосвязь полярных сияний и здоровья человека.
Взвешивание воздуха
Виды загрязнений воды и способы очищения , основанные на физических явлениях.
Виды топлива автомобилей.
Виды шумового загрязнения и их влияние на живые организмы.
Визуализация звуковых колебаний в трубе Рубенса.
Виртуальные лабораторные работы на уроках физики.
Вихревые образования.

Темы исследовательских работ по физике (продолжение)


Вклад Блеза Паскаля в создание методов изучения окружающего мира.


Вклад М.В. Ломоносова в развитие физической науки.
Влажность воздуха и влияние ее на жизнедеятельность человека.
Влажность воздуха и ее влияние на здоровье человека.
Влажность. Определение содержания кислорода в воздухе.
Влияние внешних звуковых раздражителей на структуру воды.
Влияние громкого звука и шума на организм человека.
Влияние звука на живые организмы
Влияние звука на песок. Фигуры Хладни.
Влияние звуков, шумов на организм человека.
Влияние излучения, исходящего от сотового телефона, на организм человека.
Влияние изменения атмосферного давления на посещаемость занятий и успеваемость учащихся нашей школы.
Влияние невесомости на жизнедеятельность организмов.
Влияние качества воды на свойства мыльных пузырей.
Влияние лазерного излучения на всхожесть семян гороха.
Влияние магнитного и электростатического полей на скорость и степень прорастания семян культурных растений.
Влияние магнитного поля на прорастание семян зерновых культур.
Влияние магнитного поля на рост кристаллов.
Влияние магнитной активации на свойства воды.
Влияние магнитных бурь на здоровье человека
Влияние механической работы на организм школьника.
Влияние наушников на слух человека
Влияние обуви на опорно-двигательный аппарат.
Влияние погоды на организм человека
Влияние скоростных перегрузок на организм человека.
Влияние сотового телефона на здоровье человека.
Влияние температуры на жидкости, газы и твёрдые тела.
Влияние температуры окружающей среды на изменение снежных узоров на оконном стекле.
Влияние торсионных полей на деятельность человека.
Влияние шума на организм учащихся.
Вода - вещество привычное и необычное.
Вода в трех агрегатных состояниях .
Вода и лупа
Водная феерия: фонтаны
Водород - источник энергии.
Водяные часы
Воздух, который нас окружает. Опыты с воздухом.
Воздухоплавание
Волшебные снежинки
Волшебство мыльного пузыря.
Вращательное движение твердых тел.
Вредное и полезное трение
Время и его измерение
Всегда ли можно верить своим глазам, или что такое иллюзия.
Выращивание и изучение физических свойств кристаллов медного купороса.
Выращивание кристаллов CuSo4 и NaCl, исследование их физических свойств.
Выращивание кристаллов в домашних условиях.

Выращивание кристаллов поваренной соли и сахара в домашних условиях методом охлаждения.
Высокоскоростной транспорт, движимый и управляемый силой электромагнитного поля.
Давление в жидкости и газах.
Давление твердых тел
Дары Прометея
Двигатель внутреннего сгорания.
Двигатель Стирлинга - технологии будущего.
Движение в поле силы тяжести.
Движение воздуха
Денис Габор
Джеймс Клерк Максвелл
Динамика космических полетов
Динамическая усталость полимеров.
Диффузия в домашних опытах
Диффузия в природе
Диффузия и ювелирные украшения
Доильный аппарат "Волга"
Единицы измерения физических величин.
Её величество пружина.
Железнодорожная цистерна повышенной ёмкости.
Женщины - лауреаты Нобелевской премии по физике.
Живые сейсмографы
Жидкие кристаллы
Жизнь и достижения Б. Паскаля
Жизнь и изобретения Джона Байрда
Жизнь и творческая деятельность М.В. Ломоносова.
Жизнь и творчество Льва Николаевича Термена.
Жизнь и труды А.Ф. Иоффе
Зависимость времени закипания воды от её качества.
Зависимость коэффициента поверхностного натяжения моторного масла от температуры.
Зависимость коэффициента поверхностного натяжения мыльного раствора от температуры.
Зависимость скорости испарения воды от площади поверхности и от ветра.
Зависимость сопротивления тела человека от состояния кожного покрова.
Загадки кипящей жидкости
Загадки неньютоновской жидкости.
Загадки озоновых дыр
Загадочная лента Мёбиуса.
Закон Архимеда. Плавание тел.
Закон Паскаля и его применение
Значение паровой машины в жизни человека.
Игорь Яковлевич Стечкин
Из истории летательных аппаратов
Изготовление действующей модели паровой турбины.
Измерение больших расстояний. Триангуляция.
Измерение влажности воздуха и устройства для ее корректировки.

Измерение вязкости жидкости


Измерение плотности твердых тел разными способами.
Измерение температуры на уроках физики
Измерение ускорения свободного падения
Изобретения Герона в области гидродинамики
Изобретения Леонардо да Винчи, воплощенные в жизнь.
Изучение звуковых колебаний на примере музыкальных инструментов.
Изучение свободных механических колебаний на примере математического и пружинного маятников.
Изучение свойств постоянных магнитов.
Изучение сил поверхностного натяжения с помощью мыльных пузырей и Антипузырей.
Изучение сил поверхностного натяжения с помощью мыльных пузырей.
Илья Усыскин - прерванный полет
Инерция – причина нарушения правил дорожного движения.
Исаак Ньютон
Испарение в природе и технике.
Испарение и влажность в жизни живых существ.
Испарение и конденсация в живой природе
Использование тепловой энергии свечи в бытовых условиях.
Исследование атмосферных явлений.
Исследование движения капель жидкости в вязкой среде.
Исследование движения по окружности
Исследование зависимости периода колебаний тела на пружине от массы тела.
Исследование поверхностного натяжения.
Исследование поверхностных свойств воды.
Исследование способов измерения ускорения свободного падения в лабораторных условиях .
Исследование теплопроводности жира.
Исследование физических свойств почвы пришкольного участка.
Как управлять равновесием.
Квантовые свойства света.
Колокольный звон с физической точки зрения.
Коррозия металлов
Космические скорости
Космический мусор
Красивые тайны: серебристые облака.
Криогенные жидкости
Лауреаты Нобелевской премии по физике.
Леонардо да Винчи - художник, изобретатель, ученый.

Люстра Чижевского


Магнитная жидкость
Магнитное поле Земли и его влияние на человека.
Магнитные явления в природе
Междисциплинарные аспекты нанотехнологий.
Метеорная опасность для технических устройств на околоземной орбите.
Механика сердечного пульса
Мир невесомости и перегрузок.
Мир, в котором мы живем , удивительно склонен к колебаниям.
Мифы звездного неба в культуре латиноамериканских народов.
Мобильный телефон. Вред или польза?!
Моделирование физических процессов
Модель электродвигателя постоянного тока.
Мой прибор по физике: ареометр.
Молниеотвод
Мыльные пузыри как объект исследования поверхностного натяжения.
Нанобиотехнологии в современном мире.
Нанодиагностика
Наноструктурированный мелкозернистый бетон.
Нанотехнологии в нашей жизни.
Невесомость
Об использовании энергии ветра.
Ода вращательному движению
Озон - применение для хранения овощей.
Опасность электромагнитного излучения и защита от него.
Определение высоты местности над уровнем моря с помощью атмосферного давления .
Определение коэффициента взаимной индукции.
Определение коэффициента вязкости жидкости.
Определение коэффициента поверхностого натяжения воды с различными примесями.
Определение плотности тела неправильной формы.
Определение условий нахождения тела в равновесии .
Определение центра тяжести математическими средствами.
Относительность движения
Очевидное и невероятное при взаимодействии стекла и воды.
П.Л. Капица. Облик ученого и человека.
Парадоксы учения Лукреция Кара.
Плавание тел
Плавление и отвердевание тел.
Плазма.
Плазма – четвертое состояние вещества.
Плотность и плавучесть тела
Поверхностное натяжение воды.
Поверхностное натяжение воды в космосе.
Приливы и отливы
Применение информационных технологий при изучении криволинейного движения.
Применение силы Архимеда в технике.
Применение ультразвука в медицине.
Принцип относительности Галилея.
Простые механизмы в сельском хозяйстве.
Пушка Гаусса
Радиоволны в нашей жизни
Радиоприемник с регулируемой громкостью .

Развитие ветроэнергетики


Рафинирование селена методом вакуумной дистилляции.
Реактивная тяга
Реактивное движение в современном мире.
Реактивные двигатели
Резонанс при механических колебаниях.
Роберт Гук и закон упругости
Роль рычагов в жизни человека и его спортивных достижениях.
Свойства соленой воды. Море у меня в стакане.
Сегнерово колесо
Сила притяжения
Сила трения.
Сила трения в природе.
Современные средства связи. Сотовая связь.
Создание индикаторов течения воды, плотностью равных плотности воды.
Способы определения массы тела без весов.
Способы очищения воды, основанные на физических принципах.
Суда на подводных крыльях - одно из изобретений К .Э. Циолковского.
Тайны наклонной башни Демидовых
Такой ли пустой космический вакуум?
Температура нити накала
Тепловой насос
Трение в природе и технике.
Ультразвук в медицине
Ультразвук в природе и технике.
Устройство оперативной памяти.
Ускорители элементарных части: взгляд в будущее.
Феномен гениальности на примере личности Альберта Энштейна.
Ферромагнитная жидкость
Физик Гастон Планте.
Физика землетрясений и регистрирующая их аппаратура.
Физика и акустика помещений
Физика смерча. Смерч на службе человека.
Химия и цвет
Цунами. Причины возникновения и физика процессов.
Чем дизельный двигатель лучше бензинового?
Чуть больше о смерче
Экологический паспорт кабинета физики.
Экспериментальные методы измерения ускорения свободного падения.
Эксперименты с неньютоновской жидкостью.
Энергетика: вчера, сегодня, завтра.
Энергетические возможности магнитогидродинамического эффекта.
Энергия будущего
Энергосберегающие лампы: "за" или "против".
Янтарь в физике.




Все кристаллы, окружающие нас, не образовались когда-то раз и навсегда готовыми, а выросли постепенно. Кристаллы бывают не только природными, но так же и искусственные, выращиваемые человеком. Зачем же создают еще и искусственные кристаллы, если и так почти все твёрдые тела вокруг нас имеют кристаллическое строение? При искусственном выращивании можно получить кристаллы крупнее и чище, чем в природе. Есть и такие кристаллы, которые в природе редки и ценятся дорого, а в технике очень нужны. Поэтому разработаны лабораторные и заводские методы выращивания кристаллов алмаза, кварца, сапфира и др. В лабораториях выращивают большие кристаллы, необходимые для техники и науки, драгоценные камни, кристаллические материалы для точных приборов, там создают и те кристаллы, которые изучают кристаллографы, физики, химики, металловеды, минералоги, открывая в них новые замечательные явления и свойства. В природе, в лаборатории, на заводе кристаллы растут из растворов, из расплавов, из паров, из твердых веществ. Поэтому представляется важным и интересным изучить процесс образования кристаллов, выяснить условия их образования, вырастить кристаллы без применения специальных приспособлений. Это и определило тему исследовательской работы.

Почти любое вещество может при известных условиях дать кристаллы. Кристаллы образуются чаще всего из жидкой фазы - раствора или расплава; возможно получение кристаллов из газовой фазы или при фазовом превращении в твердой фазе. Кристаллы выращивают (синтезируют) в лабораториях и на за­водах. Можно получать и кристаллы таких сложных природных ве­ществ, как белки и даже вирусы.

  • Многим известно, что растворимость веществ зависит от температуры. Обычно с повышением температуры растворимость увеличивается, а с понижением – уменьшается. Мы знаем, что одни вещества растворяются хорошо, другие - плохо. При растворении веществ образуются насыщенные и ненасыщенные растворы. Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данной температуре. Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данной температуре.

Я использовала самый простой способ выращивания кристаллов медного купороса и каменной соли из раствора. Сначала необходимо приготовить насыщенный раствор. Для этого в стакан наливают воду (горячую, но не кипящую) и в неё насыпают порциями вещество (порошок медного купороса или каменной соли) и размешивают стеклянной или деревянной палочкой до полного растворения. Как только вещество перестанет растворяться, это значит, что при данной температуре раствор насыщен. Потом он будет охлаждаться, когда вода станет постепенно испаряться из него, «лишнее» вещество выпадает в виде кристалликов. Сверху на стакан необходимо положить карандаш (палочку), вокруг которого обмотана нитка. К свободному концу нитки привешивается какой-нибудь груз, чтобы нитка распрямилась и висела в растворе вертикально, не доставая немного дна. Оставить стакан в покое на 2-3 дня. Спустя время можно обнаружить, что нитка обросла кристалликами. Результаты формирования кристаллов методом охлаждения представлены на фотографии.

  • Кульков Алексей Владимирович , магистр, студент
  • Смоленский государственный университет, г. Смоленск
  • Понасова Дарья Сергеевна , бакалавр, учитель
  • МБОУ "СОШ №3" , г. Сафоново
  • ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ
  • ФИЗИКА
  • ИНДИВИДУАЛЬНЫЙ ИТОГОВЫЙ ПРОЕКТ

В работе рассмотрены примеры тем исследовательских индивидуальных итоговых проектов по физике основной школы. Также даны методические рекомендации по выполнению некоторых предложенных тем.

  • Необходимость и способы преподавания астрономического материала в школьном курсе физики
  • Практическая работа по астрономии «Заполнение диаграммы Герцшпрунга-Рассела»
  • Использование интерактивных программ для подготовки учеников 10-11 классов к олимпиадам по физике
  • Реализация регрессионного анализа в различных компьютерных программах

Индивидуальный итоговый представляет (ИИП) собой особую форму организации деятельности обучающихся и является основным объектом оценки метапредметных результатов, полученных учащимися в ходе освоения междисциплинарных учебных программ. Выполнение индивидуального итогового проекта является обязательным в условиях реализации Федерального образовательного стандарта . Выделяется несколько типов ИИП, которые учащиеся могут выбрать:

  • практико-ориентированный, социальный;
  • исследовательский;
  • информационный;
  • творческий;
  • игровой или ролевой.

Наиболее интересным и полезным для учащихся в приобретении навыков исследовательской деятельности является исследовательский проект. Исследовательский проект требует доказательство или опровержение какой-либо гипотезы. Данный тип проекта способствует подготовке учащихся к научно-исследовательской деятельности в высшем учебном заведении.

В работе предложена классификация тем исследовательского проекта по физике для основной школы, а так же приведены краткие примеры и даны методические рекомендации по выполнению исследовательского проекта по физике по некоторым предложенным темам.

Анализируя содержание предмета «Физика» в основной школе, можно отметить, что изучаемый объём материала и его изложение позволяет учащимся выполнять исследовательскую работу по физике. Исследовательская работа может быть связана как с теоретическими и практическими расчётами физических величин, так и с конструированием физических приборов, механизмов и установок. На основе этого, можно конкретизировать виды исследовательской работы по физике путём указания видов исследовательских проектов. В таблице 1 «Исследовательский ИИП» предложены виды и темы исследовательский проектов по физике.

Таблица 1. Исследовательский ИИП

№ п/п

Вид исследовательского проекта

Темы

Проект, позволяющий ответить на вопрос «Что будет, если… »

исчезнет сила трения

исчезнет атмосфера

построить здание высотой 3000 м

Землю сжать у полюсов на 10%

масса Земли увеличится в 2 раза

Масса Луны увеличиться на 50%

перестанет действовать всемирное тяготение

перестанет действовать закон Паскаля

Исследование физических явлений

Изучение явления свободного падения

Изучение свойств радуги

Изучение приловов и отливов

Исследование свойств физических тел

Исследование температуры остывающей жидкости со временем в различных условиях

Изучение силы упругости различных металлов

Изучение силы трения между различными поверхностями

Изучение тепловых свойств свинца

Изучение тепловых свойств воды

Изучение электрических свойств воды

Исследование зависимостей между свойствами тела (вещества)

Исследование зависимости сопротивления металла от его температуры

Исследование зависимости сопротивления воды от температуры

Исследование зависимости сопротивления воздуха от массы падающего тела

Зависимость массы планеты от её расстояния от Солнца

Расчёт и способы расчёта физических величин

Расчёт плотности планет Солнечной системы

Способы измерения расстояния

Способы нахождения силы

Исследование взаимосвязи физики с другими науками и техникой

Физика в литературных произведениях

Трение в природе и технике

Простые механизмы в живой природе

Простые механизмы в технике

Реактивное движение в живой природе

Конструирование физических приборов и устройств

Конструирование трубы Кеплера

Конструирование трубы Галилея

Модель паровой турбины

Модель трансформаторной будки

Конструирование маятника Ньютона

Проект, позволяющий ответить на вопрос «Что будет, если…» подразумевает расчёт характеристик тел и явлений в новых, изменённых условиях. Так при выборе темы «Что будет, если Землю сжать у полюсов на 10%» можно найти такие характеристик уже новой планеты как средняя плотность, ускорение свободного падания на полюсах и экваторе, объём. Также можно рассмотреть и объяснить физические явления, которые будут здесь происходить.

Проекты «Исследование физических явлений» в большинстве случаев подразумевают теоретические расчёты характеристик явлений и процессов. В теме «Изучение явления свободного падения» можно предоставить данные теоретических расчетов ускорения свободного падения в различных точках земного шара (на полюсе, на экваторе, в самом низком и высоком местах на Земле) и сделать вывод о различии силы тяжести на Земле.

Проект «Исследование свойств физических тел» связан с конструированием экспериментальной установки и измерением с её помощью физических величин. Рассмотрим тему «Изучение электрических свойств воды». В рамках выполнения данного проекта можно измерить сопротивление различной воды (водопроводной, дождевой, бутылочной покупной и т.д.) и сделать вывод о её пользе (или вреде) для организма человека с точки зрения физики. Для измерения сопротивления необходимо подготовить установку, которая позволит измерить сопротивление жидкости. На рисунке 1 «Экспериментальная установка по определению сопротивления жидкости» показан возможный пример такой установки.

Рисунок 1. Экспериментальная установка по определению сопротивления жидкости

Идея определения сопротивления жидкости основана на применении закона Ома. В разные края сосуд с водой опускаются два проводника, которые последовательно соединены с амперметром и источником тока. Параллельно сосуду подключён вольтметр. Таким образом, зная силу тока в цепи и напряжение на концах цепи (точки конца цепи эквивалентны точкам на проводниках, которые опускаются в сосуд с водой) по закону Ома I=U/R рассчитывается сопротивление воды. Если каждый тип воды наливать до одинакового уровня, а проводники опускать в воду на одинаковую глубину, то размеры жидкого проводника (воды) остаются неизменными.

Рассмотрим еще один пример. При выборе темы «Изучение тепловых свойств свинца» можно практически рассчитать такие тепловые характеристика, как удельная теплоёмкость, удельная теплота плавления, температура плавления. Если способ определения удельной теплоёмкости является классическим и ему посвящена лабораторная работа в курсе физики, то с определением удельной теплоты плавления возникает ряд вопросов. Во-первых, требуется определить то количество теплоты, которое отдано свинцу для его плавления. Это можно сделать следующим способом: количество теплоты, которое необходимо для полного плавления свинца можно считать равным той теплоте (в Дж), которое выделяется паяльником, которым данный свинец плавится. А паяльник отдаёт количество теплоты, которое примерно равно работе электрического тока, характеристики которого написаны на паяльнике. Таким образом, можно найти удельную теплоту плавления свинца.

При исследовании зависимостей между свойствами тела (или вещества) целесообразным будет построение графиков зависимости между данными свойствами, а так же выявить математический вид данной зависимости. Для этого можно воспользоваться табличным редактором Microsoft Office Excel. Данная программа позволяет на графике с отмеченными экспериментальными значениями построить график, который наилучшим образом описывает данные точки. Для этого на график добавляется линия тренда с соответствующим уравнением. На рисунке 2 «Зависимость в Excel» показан график зависимости температуры остывающей воды от времени, в течение которого происходило остывание.


Рисунок 2. Зависимость в Excel

Исследование зависимостей между характеристиками позволяет учащимся получить навыки обработки реальных данных.

Цель исследовательского проекта «Расчёт и способы расчёта физических величин » - рассчитать или предоставить способы расчёта различных физических величин. Например, при выборе темы «Расчёт плотности планет Солнечной системы» можно предложить способ расчёта плотности планет, который основать на использовании определения плотности (ρ= m / V ) и предположении о шарообразной форме планет (данное предположение позволяет находить объём планеты, как объём шара по известному значению среднего радиуса).

Таким образом, можно разделить исследовательский итоговый проект по физике на несколько видов. При выборе конкретного виды и, соответственно, темы, следует обращать внимание не только на заинтересованность темой, но и учитывать свои индивидуальные способности. Так, например, при ярко выраженных технических способностях следует выбирать темы, связанные с конструированием физических приборов и устройств. Если учащийся обладает хорошим логическим мышлением и любит экспериментировать, то можно остановиться на виде исследовательского проекта «Что будет, если…».

Список литературы

  1. Кузнецова Е.В. ФЕДЕРАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ И ИНДИВИДУАЛЬНЫЙ УЧЕБНЫЙ ПРОЕКТ // Современные наукоемкие технологии. – 2015. – № 12-1. – С. 103-107; URL: https://www.top-technologies.ru/ru/article/view?id=35218 (дата обращения: 15.01.2018).
  2. Кульков А.В..) – 2017 г..01.2018).
Поделиться: