Волоконно-оптические линии связи (волс) - строим сеть предприятия. Оптоволоконные кабели Пропускная способность оптоволокна

На сегодняшний день широкое распространение при создании телекоммуникационных сетей получил оптический кабель. В его характерные особенности включены такие показатели, как:

  • высокая скорость передачи данных;
  • отсутствие восприимчивости к различным помехам;
  • по сравнению с медными кабелями, малый вес и габаритные размеры;
  • высокая продолжительность срока эксплуатации;
  • возможность увеличения расстояния между передающими устройствами до 800 км.

Пожалуй, единственными недостатками, которые можно выделить при создании сети из оптоволокна - высокая стоимость материалов и оборудования, трудоемкий процесс монтажа кабеля, связанный с необходимостью проведения сварочных работ при прокладке основных магистралей.

Конструкция оптического кабеля

  • 1 - центральный силовой элемент
  • 2 - оптические волокна
  • 3 - пластиковые трубочки-модули
  • 4 - плёнка
  • 5 - тонкая внутренняя оболочка из полиэтилена
  • 6 - кевларовые нити или броня
  • 7 - внешняя толстая оболочка из полиэтилена

Пропускная способность оптоволокна

За последние несколько десятков лет пропускная способность волоконно-оптического кабеля значительно увеличилась. При этом разработки по усовершенствованию одной из передовых технологий передачи данных не прекращается даже на минуту. В сущности, скорость передачи сигнала во многом зависит от расстояния между оборудованием, типа волоконного носителя и количества соединительных стыков в магистралях.

К примеру, использованный при построении внутренней сети (между серверами данных) многомодовый оптический кабель на расстоянии приблизительно в 200 метров способен обеспечить скорость до 10 Гбит/с.

Для прокладки внешних коммуникаций, где расстояние между передатчиками может достигать нескольких десятков километров применяется одномодовое оптоволокно. Структура такого кабеля позволяет развивать скорость потока более 10 Гбит/с. Правда, это далеко не предел возможности оптики. С увеличением потребительского спроса возникнет необходимость наращивать мощность оборудования и даже замена техники, позволяющая добиться скорости передачи данных на уровне 160 Гбит/с не способна использовать потенциал носителя в полной мере.

Виды оптоволоконного кабеля

По своей структуре оптоволоконный кабель делится на две категории:

  • многомодовое;
  • одномодовое.

Многомодовый оптический кабель хорошо зарекомендовал себя как проводник, передающий сигнал на малые расстояния. В первую очередь, это обусловлено структурой самого волокна, в названии которого слово «много» означает далеко не то, что принято считать хорошим показателем. Рекомендованное расстояние, при прокладке многомодового кабеля, от передающего устройства и до пользователя должно составлять не более одного километра. На этой дистанции проводник показывает великолепные способности по передаче светового потока практически без потерь и способен обеспечивать скорость до 10 Гбит/с. Таким образом, его можно использовать при построении сети в маленьком районе или же как оптический кабель для внутренней прокладки.

Одномодовый оптический кабель в первую очередь предназначен для передачи данных на большие расстояния, которые могут исчисляться в десятках, а то и сотнях километров. По своей структуре такой тип волокна обладает более лучшими качествами и способен поддерживать постоянную высокую скорость потока информации практически без затухания в оптическом кабеле. Таким образом, пропускная способность одномодового оптического носителя лимитируется непосредственно передающими устройствами и, при установленном мощном оборудовании, может достигать нескольких Тбит/с.

Необходимое оборудование для передачи информации по оптоволоконному кабелю

На сегодняшний день оптоволоконные сети получили широкое распространение среди компаний, предоставляющих своим абонентам доступ к интернету. При этом, для осуществления передачи данных, если не считать промежуточных муфт и прочего сопутствующего оборудования, используется следующая техника:

со стороны провайдера: - специальное оборудование DLC, известное также под названием мультиплексор. Оно позволяет производить передачу данных по волоконно-оптическому кабелю на значительные расстояния с постоянно поддерживаемой высокой скоростью.

со стороны абонента: - роутер ONT, который является оконечным клиентским оборудованием и позволяет обеспечить доступ к интернету через оптоволоконную сеть. Позволяет осуществлять доступ на скорости до 2.5 Гбит/с.

xn----etbqnigrhw.xn--p1ai

26 терабит/с по оптоволокну одним лазером

Группа немецких инженеров под руководством профессора Вольфганга Фройде (Wolfgang Freude) из университета Карлсруэ применила в оптоволокне технику OFDM (ортогональное частотное разделение каналов с мультиплексированием), которая широко используется в беспроводной связи (802.11 и LTE), цифровом телевидении (DVB-T) и ADSL.

В оптоволокне использовать OFDM сложнее, ведь тут нужно разделить на поднесущие световой поток. Раньше единственным способом сделать это было использование отдельного лазера для каждой поднесущей. Сравнение разных видов мультиплексирования

Для вещания на каждой частоте используется отдельный лазер и отдельный приёмник, так что в одном оптоволоконном канале одновременно могут передавать сигнал сотни лазеров. По словам профессора Фройде, общая пропускная способность канала ограничена только количеством лазеров. «Уже был проведён эксперимент и продемонстрирована скорость 100 терабит/с», - сказал он в интервью BBC. Но для этого пришлось использовать около 500 лазеров, что само по себе очень дорого.

Фройде с коллегами разработали технологию передачи по оптоволокну более 300 поднесущих разного цвета одним-единственным лазером, который работает короткими импульсами. Здесь проявляется интересный феномен под названием оптический частотный гребень. Каждый маленький импульс «размазывается» по частотам и времени, так что приёмник сигнала с помощью хорошего тайминга теоретически может обработать каждую частоту по отдельности.

После нескольких лет работы немецким исследователям всё-таки удалось найти правильный тайминг, подобрать подходящие материалы и осуществить на практике обработку каждой поднесущей с помощью быстрого преобразования Фурье (БПФ). Преобразование Фурье - операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты при разложении исходной функции на элементарные составляющие - гармонические колебания с разными частотами.

БПФ идеально подходит для разложения света по поднесущим. Оказалось, что из обычного импульса можно извлечь в совокупности около 350 цветов (частот), и каждый из них используется в качестве отдельной поднесущей, как и в традиционной технике OFDM. В прошлом году Фройде с коллегами провели эксперимент и на практике показали скорость 10,8 терабит/с, а сейчас ещё больше усовершенствовали точность распознавания частот.

По словам Фройде, разработанная им технология тайминга и БПФ вполне может быть реализована в микросхеме и найти коммерческое применение.

Метки:

habrahabr.ru

Оптоволокно

1. Что означают термины «терминирование» кабельной системы и «сплайсирование» оптоволоконного кабеля? Терминирование - процедура соединения кабеля, провода или волокна с коммутационным оборудованием. Сплайсирование – механическое сращивание концов волокон друг с другом при помощи муфты-зажима (сплайса). 2. Поясните понятия «базовые параметры» кабельной системы и

«затухание оптоволоконного кабеля»? Затухание – процесс ослабления светового потока в оптическом волокне. Факторы, вызывающие затухание могут быть различными: - затухание, вызванное поглощением света. Определяется как превращение светового импульса в тепло, связанное с резонансом в материале волокна. Существуют внутренние поглощения (связано с материалом волокна) и внешние поглощения (наличие микропримесей). Оптические волокна, производимые в настоящее время, имеют очень малое количество микропримесей, поэтому внешними поглощениями можно пренебрегать. - затухание света в оптическом волокне, вызванное рассеиванием излучения. Рассеивание является одним из основных фактором затухания света в волокне. Этот вид затухания, прежде всего, связан с наличием примесей в оптическом волокне, а также с дефектами сердцевины оптического волокна. Наличие подобных включений, приводят к тому, что световой поток, распространяясь по оптическому волокну, откланяется от правильной траектории, вследствие чего происходит превышение угла преломления и выходу части светового потока через оболочку. Также наличие посторонних примесей приводит к частичному отражению светового потока в обратную сторону, так называемый эффект обратного рассеивания; - затухание света, связанного с изгибами оптического волокна, существует два типа изгибов: 1. Микроизгиб, этот вид изгиба вызван микроскопическими изменениями геометрических параметров сердечника волокна в результате производства. 2. Макроизгиб, вид вызван большим изгибом оптического волокна, который превышает минимальный радиус, при этом происходит частичный выход света из сердцевины волокна. Радиус изгиба, при котором световой импульс распространяется без каких-либо искажений, равен 10 сантиметрам (для одномодовых волокон). Увеличение минимального радиуса изгиба приводит к повышению эффекта рассеивания. Факторами необходимыми для определения полного коэффициента затухания являются: потери ввода и вывода оптического сигнала, потери поглощения и рассеивания, потери изгиба и потери на механических соединителях. Коэффициент затухания определяется как отношение мощности введенной в оптическое волокно к мощности принятой из волокна оптического сигнала. Измеряется в децибелах (дБ). 3. Опишите конструкцию и характеристики одномодового оптоволоконного кабеля. Оптоволоконный кабель представляет собой тонкие светопроводящие стеклянные или пластиковые сердечники в стеклянной же светоотражающей оболочке, заключенной в защитную оплетку. Одномодовое волокно - (singlemode) SM, 9-10/125 мкм, то есть 9-10 микрометров – диаметр сердечника, 125 мкм – диаметр оболочки. Передается световой пучок с длинами волн 1300 и 1550 нм и с затуханием 1 Дб/км. 4. Опишите конструкцию и характеристики многомодового оптоволоконного кабеля. многомодовое волокно - (multimode) ММ, 62,5/125 и 50/125 мкм: диаметр сердечника составляет 62.5 или 50 микрометров. Передается световой пучок с длинами волн 850 и 1300 нм и с затуханием 1,5-5Дб/км.

5. Какие стандарты на оптоволокно должны использоваться

администратором системы при организации оптоволоконной

кабельной системы? В настоящее время определены такие соответствия рекомендации IEC 60793 и рекомендации МСЭ-Т (ITU-T) с добавлением длины волны определённого типа оптоволокна:

    Тип B1.1 соответствуют ITU-T G652 (a, b) с длиной волны 1,31 мкм и ITU-T G654a с длиной волны 1,55 мкм;

    Тип B1.2 b соответствует ITU-T G654 (b) с длиной волны 1,55 мкм;

    Тип B1.2 c соответствует ITU-T G654 (c) с длиной волны 1,55 мкм;

    Тип B1.3 соответствует ITU-T G652 (c, d) с длиной волны 1,31 мкм;

    Тип B2 соответствует ITU-T G.653 (a, b) и ITU-T G.655 (a,b) с длиной волны 1,55 мкм;

    Тип B4 c соответствует ITU-T G.655 (c) с длиной волны 1,55 мкм;

    Тип B4 d соответствует ITU-T G.655 (d) с длиной волны 1,55 мкм;

    Тип B4 e соответствует ITU-T G.655 (е) с длиной волны 1,55 мкм;

    Тип B5 соответствует ITU-T G.656 с длиной волны 1,55 мкм;

    Тип B6 a соответствует ITU-T G.657 A1/2 длиной волны 1,31 мкм;

    Тип B6 b соответствует ITU-T G.657 В2/3 длиной волны 1,31 мкм.

6. Какие стандарты администрирования кабельных систем должен

применять администратор системы? Создание кабельных систем основывается на множестве

стандартов. Приведем основные стандарты, необходимые для

высокоскоростной передачи данных и обязательные д л я со блюдения

службами администратора системы.

EIA/TIA 568 - стандарт создания телекоммуникаций служебных

и производственных зданий, планирование кабельных

систем зданий, методика построения системы телекоммуникаций

служебных и производственных зданий.

EIA/TIA 569 - стандарт, описывающий требования к помещениям,

в которых устанавливается структурированная кабельная

система и оборудование связи.

EIA/TIA 606 - стандарт администрирования телекоммуникационной

инфраструктуры в служебных и производственных

EIA/TIA 607 - стандарт, устанавливающий требования к

инфраструктуре телекоммуникационной системы заземления

и выравнивания потенциалов в служебных и производственных

Возможно использование стандартов не EIA/TIA, а стандартов

на построение структурированных кабельных систем ISO.

ISO 11801 - стандарт на структурированные кабельные системы

общего назначения в зданиях и кампусах. Он фун кц ионально

аналогичен стандарту EIA/TIA 568. 7. Какие функции выполняют системы администрирования кабельной

системы? Приведите пример реализации. Поиск неисправностей в сети - достаточно сложный процесс,

а процедура регистрации изменений состояния соединений

вручную так же сложна и ненадежна. Поэтому чаще всего

и сетях применяют системы администрирования кабельных

систем, позволяющие следить за работоспособностью системы

и ее отдельных компонентов и устранять неполадки в минимально

короткие сроки. 8. Перечислите подсистемы кабельной системы здания и их функции.

Подсистема рабочего места. Подсистема рабочего места предназначена для подключения конечных потребителей (компьютеров, терминалов, принтеров,телефонов и т. д.) к информационной розетке. Включает в себя коммутационные кабели, адаптеры, а также устройства позволяющие подключать оконечное оборудование к сети через информационную розетку. Работа СКС, в конечном итоге, обеспечивает работу именно подсистемы рабочего места.

Горизонтальная подсистема. Горизонтальная подсистема покрывает пространство между Информационной розеткой на рабочем месте и горизонтальным кроссом в телекоммуникационном шкафу. Она состоит из горизонтальных кабелей, информационных розеток и части горизонтального кросса, которая обслуживает горизонтальный кабель. Каждый этаж здания рекомендуется обслуживать своей собственной Горизонтальной подсистемой. Все горизонтальные кабели, независимо от типа передающей среды, не должны превышать 90 м на участке от информационной розетки на рабочем месте до горизонтального кросса. На каждое рабочее место должно быть проложено как минимум два горизонтальных кабеля.

Магистральная подсистема. Магистральная подсистема соединяет главный кросс в аппаратной с промежуточными кроссами и с горизонтальными кроссами. Магистральная подсистема должна включать в себя кабель, установленный вертикально между этажными кроссами в многоэтажном здании, а также кабель, установленный горизонтально между кроссами в протяженном здании.

Подсистема оборудования. Подсистема оборудования состоит из электронного оборудования связи коллективного (общего) использования, расположенного в аппаратной или в телекоммуникационном шкафу, и передающей среды, необходимой для подключения к распределительному оборудованию, обслуживающему горизонтальную или магистральную подсистемы.

Магистраль комплекса зданий. Когда кабельная система охватывает более одного здания, компоненты, обеспечивающие связь между зданиями, составляют Магистраль комплекса зданий. Эта подсистема включает в себя среду, по которой осуществляется передача магистральных сигналов, соответствующее коммутационное оборудование, предназначенное для терминирования данного типа среды, и устройства электрической защиты для подавления опасных напряжений при воздействии на среду грозового и/или высоковольтного электричества, пики которых могут проникать в кабель внутри здания.

Административная подсистема. Административная подсистема объединяет вместе, перечисленные выше подсистемы. Состоит из коммутационных кабелей, с помощью которых производится физическое соединение различных подсистем, и маркировки для идентификации кабелей, коммутационных панелей и т. д

9. Перечислите характеристики кабельной системы кампуса согласно

стандарту TIA/EIA 568. В соответствии с стандартом построения кабельных систем TIA/EIA 568, СКС имеет следующие характеристики: топология любых подсистем - звезда; типы устройств и помещений, соединяющих кабельные подсистемы: горизонтальный клозет и кросс (НС), промежуточный клозет и кросс (1C), главный клозет и кросс (МС) и аппаратная (ER) - помещение для активного сетевого оборудования; число промежуточных клозетов между главным и горизонтальным клозетом - не более 1 клозета; между любыми двумя горизонтальными клозетами - не более 3 клозетов; максимальная длина магистрального сегмента для витой пары - 90 м; не зависит от типа кабеля; максимальная длина магистрального сегмента для оптоволокна зависит от типа кабеля (см.рис)

10. Приведите примеры реализации маркировки кабельной системы согласно стандарту администрирования. ГОСТ Р53246-2008 Маркировка цветовым кодом в зависимости от класса оптического волокна

11. Что представляет собой функциональная схема сети? Когда и как ее

делает администратор системы?

12. Перечислите технические метрики оптоволоконной кабельной

системы. Как провести их коррекцию после отклонений от

номинальных значений? Задержки (Frame Delay Ratio). Задержка - критичный параметр,

имеющий большое значение для приложений, работающих

в реальном масштабе времени. Этот параметр уже рассматривался

как техническая метрика для 100 Base Ethernet.

В документах форума приведен теоретический расчет данного

параметра для Metro Ethernet. На практике достаточно проблематично

сложность современных систем).

Потери фреймов FLR (Frame Loss Ratio). Потери фреймов

Это доля фреймов, не доставленных получателю, от

общего числа переданных фреймов за отчетный период (час,

день, месяц).

Влияние потерь пакетов на пользовательский трафик, как и

задержек, различно и зависит от типа передаваемых данных.

Соответственно потери могут по-разному влиять на качество

обслуживания QoS в зависимости от приложений, услуг

или телекоммуникационных протоколов высокого уровня,

используемых для обмена информацией. Например, потери,

не превышающие 1 %, приемлемы для приложений типа Voice

over IP (VoIP) , однако их увеличение до 3 % делает невозможным

предоставление этого сервиса.

С другой стороны, современные приложения гибко реагируют

на рост потерь, компенсируя его снижением скорости

передачи или применением адаптивных механизмов компрессии

Математические описания FLR также представлены в документах

Вариации задержки FDV (Frame Delay Variations) - это один

из критичных параметров для приложений, работающих в режиме

реального времени.

FDV определяется как разница в задержке нескольких выбранных

пакетов, отправленных от одного устройства к другому. Эта метрика применима только к успешно доставленным

пакетам за некий интервал времени. Ее математические рас

четы приведены в документах форума.

Пропускная способность капала. Полоса пропускания канала

является теоретическим максимумом возможной передаваемой

информации и очень часто это понятие при измерениях

заменяют понятием пропускной способности канала,

которое отражает реальную возможность среды, т. е. объем

данных, переданных сетью или ее частью в единицу времени.

Пропускная способность не является пользовательской характеристикой,

так как она характеризует скорость выполнения

внутренних операций сети - передачи пакетов данных между

узлами сети через различные коммуникационные устройства.

Процент использования полосы пропускания канала в единицу

времени называют утилизацией канала. Утилизацию ка нала

также часто используют как метрику. Пропускная способность

измеряется либо в битах в секунду, либо в пакетах

в секунду. Пропускная способность может быть мгновенной,

средней и максимальной.

Средняя пропускная способность вычисляется путем деления

общего объема переданных данных на время их передачи,

причем выбирается достаточно длительный промежуток времени

Час, день или неделя.

Мгновенная пропускная способность отличается от средней

пропускной способности тем, что для усреднения выбирается

очень маленький промежуток времени, например 10 мс или 1 с.

Максимальная пропускная способность - это наибольшая

мгновенная пропускная способность, зафиксированная в течение

периода наблюдения.__

13. Какие бизнес-метрики использует администратор системы при

эксплуатации кабельной системы? Существуют три основные бизнес-метрики работы ИС.

Ожидаемое время восстановления системы MTTR (Mean

Time to Restore). Эта метрика задается бизнес-подразделениями

компании службам администратора системы. Есть виды бизнеса,

которые могут просуществовать без ИС только несколько

минут, а затем цена простоя за минуту станет критически

Другие виды бизнеса могут ждать восстановления системы

несколько дней без финансовых потерь. Это критическая

метрика д ля планирования процедуры восстановления. Стоимость

по применению превентивных мер д ля восстановления

системы растет в геометрической прогрессии в зависимости от

значения MTTR. Время бесперебойной работы системы - метрика, характеризующая

время работы системы. Эта метрика похожа на метрику

MTBF, обсуждавшуюся в главе 8, но учитывает не только

технические проблемы, а и проблемы сопровождения сети. Она

используется для измерения надежности и стабильности сети и

отображает время, которое сеть работает без сбоев или необходимости

перезагрузки в целях администрирования или обслуживания.

Надежность системы иногда измеряют в процентах (обычно

не менее 99%). Слишком высокое ее значение может означать недостаточную

квалификацию администратора системы, так как

часть процессов требует регламентной остановки и перезагрузки.

Ожидаемое время между отказами MTBF (Mean Time Between

Failures), или наработка на отказ, - это метрика работы

оборудования, задаваемая производителем. Так как современное

компьютерное оборудование работает достаточно надежно

(очень часто производителем дается пожизненная гарантия),

то часть производителей не приводит эту метрику в своей технической

документации. Администратору системы следует

в этом случае брать ее из публикуемых аналитических данных

по данному виду оборудования.

Время подъема системы Uptime - это результирующая

метрика, которая говорит о том, сколько времени пользователь

не пользуется ИС из-за проблем диагностики ошибки и

восстановления системы, т. е. это совокупность времени для

поиска ошибок, их диагностики, времени восстановления и

запуска ИС в промышленном режиме. Эта метрика задается

бизнес-подразделениями службам администратора системы в

SLA. Определяется она исходя из финансовых возможностей

предприятия и, соответственно, его оснащенностью средствами

диагностики и восстановления. Для служб администратора

системы эта метрика является отчетной и определяет их возможность

поддерживать ИС в работоспособном состоянии. Доступность услуги (Service Availability) оказывает прямое

влияние на фактическое качество услуги, потребляемой

пользователем. Существуют три наиболее важных критерия,

определяющих доступность услуги: время внедрения услуги

(Service Activation Time), доступность соединения (Connection

Availability), время восстановления услуги после сбоя (Mean

Time to Restore Service - MTTR).

Время внедрения услуги - это время, которое проходит с

момента заказа пользователем нового сервиса (или модификации параметров существующего сервиса) до момента, когда

услуга будет активизирована и доступна пользователю. Время

инсталляции может занимать от нескольких минут до нескольких

месяцев. Например, для модификации существующего

сервиса (по запросу пользователя) в целях повышения

его производительности может потребоваться прокладка

волоконно-оптического кабеля до места расположения пользователя,

что потребует продолжительного времени.

Доступность соединения определяет, насколько долго пользовательское

соединение соответствует параметрам контракта.

Обычно значение этого параметра в описании сервиса указывается

в процентах (иногда в минутах). Доступность соединения

вычисляется как процент времени, в течение которого

пользовательское соединение находилось в полностью работоспособном

состоянии (пользователь принимал и передавал

данные), от общей продолжительности отчетного периода.

Поставщик услуги (например, оператор связи) обычно исключает

из времени простоя период проведения регламентных

работ, поскольку о предстоящей профилактике пользователь

оповещается заранее.

Время восстановления услуги после сбоя определяется как

ожидаемое время, необходимое для восстановления нормального

функционирования услуги после сбоя. Эта метрика уже

обсуждалась в главе 8. Дополнительно отметим некоторые ее

особенности. Большинство сетей обеспечивают некоторый

уровень избыточности с автоматическим восстановлением

услуги при возникновении сбоев или неисправностей. Для

подобных ситуаций оператор связи выставляет MTTR, равным

нескольким секундам или даже миллисекундам. Если

требуется вмешательство технического персонала, это время

принимается обычно равным нескольким минутам, реже -

14. Какие службы администратора системы должны быть

задействованы в процессе восстановления оптоволоконной

кабельной системы?

15. Какие работы по восстановлению оптоволоконной кабельной

системы и в каком случае администратор системы отдаст

аутсорсинговой компании?

16. Приведите пример применения базовой модели поиска ошибок

администратором системы при «медленной» работе оптоволоконной

кабельной системы.

studfiles.net

Оптоволоконный кабель - от выбора до использования

Оптоволоконний кабель - не только товар, который можно купить на сайте компании «Финфорт-Интертрейдинг», это прежде всего составляющий компонент для построения надёжной, безотказной сети Интернет.

Оптоволокно передаёт данные с очень высокой скоростью. С каждой новой модернизацией повышается не только качество, но и объём передаваемой информации. Пропускная способность оптоволоконного кабеля уже измеряется в Тбит/с. Но и это ещё не предел - есть возможность для многократного увеличения пропускной способности.

Как выбрать оптоволоконний кабель?

На оптоволокно есть много спецификаций, которые охватывают разные аспекты, такие как размеры, пропускная способность, прочность, радиус изгиба, выбор коннекторов и даже цвет защитной оболочки, которая предохраняет кабель от повреждения.

Из основных параметров, которые нужно знать, стоит выделить длину оптоволокна, диаметр, пропускную способность оптоволоконного кабеля, окно прозрачности, затухание сигнала.

Будете заказывать кабель на сайте «Финфорт-Интертрейдинг», всегда берите с запасом - вдруг потребуется перестановка оборудования в пределах помещения, дополнительные метры или целая катушка никогда не помешают!

Для подсоединения оптоволоконного кабеля к оборудованию нужны оптические коннекторы. Самыми популярными являются SC и ST коннекторы. Все виды соединителей для кабелей есть на странице с товарами сайта «Финфорт-Интертрейдинг» - выбирайте подходящие!

Выбрать и купить оптоволоконный кабель на сайте компании «Финфорт-Интертрейдинг» не составит труда. Вот чего вы можете не знать, так это некоторые нюансы, на которые редко кто обращает внимание.

Никогда не смотрите непосредственно в разрез оптоволокна. Оптическая энергия, которая передаётся через кабель, не видима для глаз, но она способна необратимо повредить сетчатку.

Осторожно проводите сращивание волокон. Обрезки оптоволокна - крохотные, почти невидимые острые стёклышки, которые могут повредить кожу рук или попасть в глаза. Чтобы собрать осколки, воспользуйтесь скотчем.

Проследите за тем, чтобы количество волокон в кабеле одной сети (снаружи и внутри здания) максимально совпадало.

Во время прокладки оптоволокна тестируйте и документируйте такие данные, как затухание каждого волокна. Составьте описание мощности оптического излучения при передаче и при приеме, укажите оптические потери, местоположение патч-панели, тип коннектора для каждого соединения.

Конечно, это далеко не вся информация о оптоволоконных кабелях. Подробные технические характеристики описаны на сайте компании «Финфорт-Интертрейдинг» в разделе с товарами. Заходите, выбирайте, заказывайте!

5.2 РАЗНИЦА ВО ВРЕМЕНИ ПРОБЕГА ОГРАНИЧИВАЕТ

ПРОПУСКНУЮ СПОСОБНОСТЬ ЛИНИИ СВЯЗИ

Упомянутые в § 4.1 оптимистичные прогнозы об огромной пропускной способности оптических кабелей, связи исходят из соображения, что ширина полосы передаваемого сигнала всегда должна быть несколько меньше, чем сама несущая частота.

Пропускная способность стеклянного волокна не безгранична.

Чтобы передать телефонный разговор как последовательность импульсов, необходимо передать большое число (конкретно 64 000) двоичных знаков в секунду (64 000 бит/с или 64 кбит/с). Чтобы преобразовать непрерывно изменяющийся ток микрофона в двоичный сигнал, его необходимо прежде всего воспроизвести с помощью импульсов. Найденные значения амплитуды теперь будут изображаться двоичным числом и посылаться как двоичные сигналы между двумя посылками импульсов. Со стороны приемника следует такое же обратное преобразование. Чтобы передать сигнал с более высоким качеством, необходимо различать по меньшей мере 256 амплитудных значений микрофонного тока. Поэтому требуется восьмикодовая система (8 двоичных знаков на кодовое слово) для каждого значения импульсной посылки. Для передачи одного движущегося телевизионного изображения требуется скорость передачи 80 млн. бит в секунду (80 Мбит/с).

В качестве пропускной способности линии - все равно из меди или стекла - принимается наибольшая скорость передачи сигнала через эту линию, измеренная в битах в секунду (бит - двоичная цифра).

Единица двоичной информации может быть приблизительно пересчитана в соответствующую ширину полосы частот, как обычно делается в аналоговой передающей технике для обозначения характеристики сигналов или кабелей. Так как для передачи информации со скоростью 2 бит/с теоретически требуется ширина полосы по крайней мере 1 Гц (практически около 1,6 Гц), можно приблизительно определить скорость передачи сигнала или пропускную способность в битах в секунду и соответствующую ей ширину полосы пропускания в герцах.

Возьмем для примера двоичный закодированный телефонный сигнал. Каждый единичный сигнал этой последовательности (единичный импульс тока или света) должен быть не длиннее, чем 1/64000 с, чтобы не мешать следующим сигналам. Пропускная способность линии принципиально тем выше, чем короче импульсы можно по ней передать.

Точно так же существуют границы и для световода. Принцип его действия ранее упоминался: свет распространяется зигзагообразно в светопроводящем сердечнике благодаря полному внутреннему отражению от стенок, к внешней стороне которых примыкает среда с малым коэффициентом преломления - оболочка. Это полное отражение связано с одним условием. Угол между световым лучом и оптической осью световода должен быть не более предельного угла полного внутреннего отражения . Он определяется отношением показателей преломления в сердечнике , и в оболочке :

Можно было бы отдать предпочтение волокну с большим различием показателей преломления, так как оно, очевидно, может воспринять и передать больше света от источника с большим углом излучения. Это преимущество было бы действительно решающим, если бы требования стояли только в возможно более высокой пропускной способности световода.

5.3 ПРОПУСКНАЯ СПОСОБНОСТЬ ВОЛОКОННЫХ СВЕТОВОДОВ

В одномодовых (мономодовых) и многомодовых световодах разная (в одномодовых больше из-за их толщины стержня). Вызванный различной длиной пробега в световоде временной разброс элементов выходного сигнала и как следствие рассеяние части энергии на выходе световода называют модовой дисперсией. К сожалению, она является не единственной причиной ограничения пропускной способности. Необходимо еще добавить так называемую материальную дисперсию. Она состоит в том, что показатель преломления стержня световода зависит от длины волны. Длинноволновые красные лучи отклоняются меньше, чем коротковолновые синие. Этот эффект не имел бы значения для техники световой связи, если бы применяемые источники излучали свет только одной длины волны. К сожалению, этого не бывает. Хотя ширина спектра полупроводникового лазера относительно узка, он излучает свет в некотором интервале длин волн шириной несколько нанометров. Светоизлучающий диод в этом отношении значительно превосходит его - приблизительно на 30 - 40 нм. Ограничение этой полосы невозможно без потери энергии. Именно эти различные спектральные составляющие излучения проходят через световод с различной скоростью
, что, конечно, приводит к уширению импульса и ограничивает пропускную способность световода.

В волокне со ступенчатым профилем показателя преломления преобладает модовая дисперсия вследствие большой разницы времен пробега между осевым и граничными лучами. В градиентном световоде с оптимальным профилем показателя преломления обе дисперсии становятся приблизительно одинаковыми. Напротив, в мономодовом волокне модовая дисперсия не имеет значения и только материальная дисперсия определяет характеристику передачи.

И третий фактор, влияющий на качество передачи - волноводная дисперсия . Она возникает только в мономодовых световодах, а именно потому, что единственная способная к распространению мода имеет скорость распространения, зависящую от длины волны.

Анализ причин и влияния материальной дисперсии на характеристики передачи позволили сделать выводы, которые представляют исключительный интерес для практики и оказывают решающее влияние на дальнейшее развитие световодной техники. Прежде всего выяснилось, что уширение импульса, вызванное материальной дисперсией, в значительной степени определяется микроструктурой зависимости показателя преломления данного светопроводящего материала от длины волны. Если на графике такой зависимости имеется участок, на котором кривая стремится к нулю, то на этой длине волны можно ожидать минимального уширения импульса и пренебречь влиянием материальной дисперсии.

Действительно, на кривых профиля показателя преломления можно найти такую точку, например, для кварцевого стекла при
. Это означает, что если среди узкополосных источников света имеются такие, для которых материальная дисперсия равна нулю, то соответственно пропускная способность принимает максимальное значение.

Исходя из значений материальной дисперсии можно рассчитать для различных длин волн уширение импульса и из этого затем скорость передачи для лазера (спектральная ширина около 2 нм) и для светоизлучающего диода (спектральная ширина около 40 нм). Даже для светоизлучающего диода в этой области длин волн можно ожидать скорости передачи свыше 1 Гбит/с на 1 км. Для лазеров экспериментально было получено значение 1,4 Гбит/с на 1 км! Понятно, что эта область длин волн нулевой дисперсии световода представляет большой интерес.

Только что названные характеристики передачи реальны и указывают на технические возможности, которые, имеются в простых многомодовых световодах и сегодня еще не исчерпаны. Нельзя забывать, однако, что столь высоких значений скорости передачи можно достигнуть только путем обеспечения оптимальных параметров светоизлучающего диода для определенной длины волны, которые для других длин волн создают худшие условия передачи. Кроме того, требуется соблюдение очень малых, допусков при изготовлении световода для обеспечения требуемого профиля показателя преломления, что несомненно удорожает световод.

Интересны и важны также изложенные выше соображения о том, что в любом случае не может быть создан световод с максимальной пропускной способностью. Для большинства областей пропускная способность применения световода достаточна. При этом оказывается возможным применить более простые электрические соединители и получить больший КПД при соединении и т. д.

5.4 ОПТИЧЕСКИЕ КАБЕЛИ, ИХ КОНСТРУКЦИИ И СВОЙСТВА

Одиночная двухпроводная цепь, одиночная коаксиальная пара являются в электрической технике связи редким явлением. Как правило, электрический кабель состоит из нескольких пар. Общая броня защищает их от окружающего влияния различного рода - повреждения грызунами, влажности и механических воздействий.

Световод, так же как и электрический проводник, помимо применения в качестве одиночного проводника света включается в состав оптического кабеля, и к нему предъявляются требования, аналогичные требованиям, предъявляемым к электрическим кабелям.

Однако электрические проводники и световоды настолько сильно различаются, что было бы удивительно, если бы электрические и оптические кабели не отличались между собой по конструкции, способам монтажа, прокладки и эксплуатации. Вместе с тем имеется многолетний опыт механической защиты тонких проводников (медные провода толщиной в десятые доли миллиметра используются достаточно широко), который может быть использован для защиты чувствительных стеклянных волокон.

Когда речь идет о различии между световодами и медными проводниками, необходимо назвать основное свойство, которое до сих пор вообще еще не называлось: абсолютная нечувствительность световода по отношению к помехам от электрического и магнитного полей . Здесь можно было бы сказать, что экранирование электрических кабелей для защиты их от внешних электромагнитных помех абсолютно излишне в оптических кабелях.

Основную роль играет, конечно, сам материал - стекло, которое выступает теперь в качестве заменителя ценного цветного металла - меди. Этот материал-заменитель обусловливает большой экономический выигрыш. Запасы меди в мире постоянно истощаются, а цены растут. По некоторым прогнозам еще на исходе столетия месторождения на суше, известные сегодня, будут исчерпаны. Основной материал для стеклянных оптических волокон - кварцевый песок - имеется в больших количествах. В технике связи несколько килограммов меди могут быть заменены 1 г стекла высокой очистки, если за основу принять одинаковую пропускную способность кабеля.

Из этого соотношения следует еще одно преимущество: оптические кабели легче электрических. Это особенно заметно в кабелях с высокой пропускной способностью - из-за малого диаметра световода. Ясно, что оба эти свойства являются, непосредственным преимуществом во многих областях применения.

Наконец, необходимо указать на фактор гальванической развязки передатчика и приемника. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют силу.

Наряду с этими полезными параметрами необходимо конечно, назвать другие, по которым оптические волокна уступают меди и которые должен учитывать конструктор кабелей.

Это прежде всего чувствительность незащищенного волокна к водяному пару . Это критическое свойство было очень скоро обнаружено, но было также обнаружено и противодействие ему: непосредственное покрытие световода защитной пленкой толщиной несколько микронметров непосредственно в процессе вытягивания волокна.

Эта защитная оболочка, в основном состоящая из полимера, полностью защищает световод. Она повышает также механическую прочность световода и его упругость. Кроме того, обеспечивается постоянство параметров при неблагоприятных окружающих условиях; без защитной оболочки они снижаются уже через несколько часов или дней.

Механический предел прочности при разрыве для волокна довольно высок и соответствует прочности стали. Однако стекло хрупко, изгибы с малым радиусом волокно не выдерживает и ломается. Но и этот недостаток относителен: стекловолокно, снабженное упомянутым тонким защитным слоем, вполне можно обмотать вокруг пальца, а некоторые сорта – даже вокруг тонкого карандаша. Учитывая это типичное свойство стекла, необходимо, конечно, принимать меры защиты в тех случаях, когда несколько световодов объединяются в одном кабеле, который в дальнейшем будет изгибаться и скручиваться. Это случается при намотке на барабан и при укладке. Конструкция кабеля должна быть такой, чтобы устранить механические перегрузки световода. Но опасны не только разрушение волокна, но и микроизгибы. Они возникают, когда светопроводящие волокна лежат на шероховатой поверхности в условиях приложения растягивающей силы, и могут вызывать дополнительные световые потери. Это явление можно наблюдать в демонстрационном опыте, когда к светопроводящему волокну, туго, виток к витку намотанному на барабан, подводится видимый свет, например от He-Ne лазера. Весь барабан при этом излучает яркий красный свет, что указывает на световые потери, вызванные микроизгибами.

Чтобы уменьшить механические нагрузки на волокна, был опробован ряд решений. Отдельные проводники свободно укладываются в поперечном сечении кабеля; в процессе изготовления кабеля следят за тем, чтобы волокна были несколько длиннее, чем кабель. На рисунке показана повивно-концентрическая конструкция, она применяется очень часто. При этом световоды лежат свободно в тонких гибких трубках или на них накладывается пористая изоляция.

При колебаниях окружающей температуры от конструкции кабеля существенно зависят механические силы, которые действуют на световод. Единственным слабым местом, кажется, является оболочка волокон со ступенчатым показателем преломления. Ее показатель преломления, который лишь ненамного меньше показателя преломления сердечника, может в неблагоприятных случаях увеличиться при низких температурах, чем будут нарушены условия полного внутреннего отражения и соответственно появятся дополнительные потери на излучение.

Оптических волокон ... эксплуатации волоконно -оптических линий связи на воздушных линиях электропередачи...

  • Постановка лабораторной работы по курсу волоконно -оптические системы связи

    Реферат >> Промышленность, производство

    И.И.. Волоконно -оптические линии связи . -М.: Радио и связь , 1990 –224с. М.М. Бутусов, С.М. Верник, С.Л. Балкин и другие. Волоконно -оптические системы передачи. -М.: Радио и связь ...

  • Волоконно -оптические датчики

    Реферат >> Коммуникации и связь

    Информации. Имеются так называемые когерентные волоконно -оптические линии связи , где пригодны только одномодовые... в когерентных линиях связи непрактично, что и предопределило применение в подобных линиях только одномодовых оптических волокон . Напротив, ...

  • Модернизация зоновой сети Самарской области на базе волоконно -оптический линий передач

    Дипломная работа >> Коммуникации и связь

    В.И. Иванова. – М.: Радио и Связь , 1994. – 224 с. Строительство и техническая эксплуатация волоконно -оптических линий связи / В.А. Андреев, В.А. Бурдин, Б.В. Попов...

  • В журнале Nature Photonics опубликовано описание новой технология передачи данных по оптоволокну на скорости до 26 Тбит/с вместо нынешних максимальных 1,6 Тбит/с.

    Группа немецких инженеров под руководством профессора Вольфганга Фройде (Wolfgang Freude) из университета Карлсруэ применила в оптоволокне технику OFDM (ортогональное частотное разделение каналов с мультиплексированием), которая широко используется в беспроводной связи (802.11 и LTE), цифровом телевидении (DVB-T) и ADSL.

    В оптоволокне использовать OFDM сложнее, ведь тут нужно разделить на поднесущие световой поток. Раньше единственным способом сделать это было использование отдельного лазера для каждой поднесущей.

    Сравнение разных видов мультиплексирования

    Для вещания на каждой частоте используется отдельный лазер и отдельный приёмник, так что в одном оптоволоконном канале одновременно могут передавать сигнал сотни лазеров. По словам профессора Фройде, общая пропускная способность канала ограничена только количеством лазеров. «Уже был проведён эксперимент и продемонстрирована скорость 100 терабит/с», - сказал он в интервью BBC. Но для этого пришлось использовать около 500 лазеров, что само по себе очень дорого.

    Фройде с коллегами разработали технологию передачи по оптоволокну более 300 поднесущих разного цвета одним-единственным лазером, который работает короткими импульсами. Здесь проявляется интересный феномен под названием оптический частотный гребень . Каждый маленький импульс «размазывается» по частотам и времени, так что приёмник сигнала с помощью хорошего тайминга теоретически может обработать каждую частоту по отдельности.

    После нескольких лет работы немецким исследователям всё-таки удалось найти правильный тайминг, подобрать подходящие материалы и осуществить на практике обработку каждой поднесущей с помощью быстрого преобразования Фурье (БПФ). Преобразование Фурье - операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты при разложении исходной функции на элементарные составляющие - гармонические колебания с разными частотами.

    БПФ идеально подходит для разложения света по поднесущим. Оказалось, что из обычного импульса можно извлечь в совокупности около 350 цветов (частот), и каждый из них используется в качестве отдельной поднесущей, как и в традиционной технике OFDM. В прошлом году Фройде с коллегами провели эксперимент и на практике показали скорость 10,8 терабит/с , а сейчас ещё больше усовершенствовали точность распознавания частот.

    По словам Фройде, разработанная им технология тайминга и БПФ вполне может быть реализована в микросхеме и найти коммерческое применение.

    Большинство технических специалистов, работающих с оптоволокном, знают об отличии многомодовых волокон от одномодовых. Но не все информированы о характеристиках оптических волокон и о протоколах передачи информации по ним. В статье приведены описания конкретных характеристик оптоволокон и протоколов передачи Ethernet, вызывающих, иногда, противоречивые толкования.

    Характеристики оптических волокон

    Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

    Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

    При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

    Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

    Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии . Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

    Еще одной типичной характеристикой оптического волокна является затухание . Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

    Сетевые протоколы для оптической передачи Ethernet

    Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

    10BASE-FL - 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

    100BASE-SX - 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

    100BASE-FX - 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

    100BASE-BX - 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

    1000BASE-SX - 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

    1000BASE-LX - 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

    1000BASE-LH - - 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

    10GBASE-SR - 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

    10GBASE-LX4 - 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

    В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

    Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

    МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications - Sectional Specification for Category A1 Multimode Fibers”

    Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

    (1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

    (2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

    (3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

    (4) Международный Стандарт ISO/IEC 11801 определяет максимальное значение затухания ОВ. Стандарты IEC и TIA описывают(минимальное) или среднее затухание «голого» ОВ.

    Оптоволоконный или просто оптический кабель является одним из самых популярных проводников. Он используется повсеместно как для создания новых кабельных систем, так и для обновления старых. Все потому, что оптоволоконный кабель имеет множество преимуществ перед медным. Именно их мы и рассмотрим в этой статье.

    • Пропускная способность

    Чем выше пропускная способность, тем больше информации можно передавать. Оптоволоконный кабель обеспечивает большую пропускную способность: до 10Гбит/с и выше. Это лучшие показатели, чем у медного кабеля. Стоит также учитывать, что скорость передачи будет разной у разных типов кабеля. Например, одномодовый оптоволоконный кабель обеспечивает большую пропускную способность, чем многомодовый.

    • Расстояния и скорость

    При использовании оптоволоконного кабеля информация передается с большей скоростью и на более дальние расстояния практически без потери сигнала. Эта возможность обеспечивается благодаря тому, что сигнал передается через оптику в виде световых лучей. Оптоволокно лишено ограничения на расстояние в 100 метров, как это можно наблюдать с неэкранированным медным кабелем без усилителя. Расстояние, на которое возможно передать сигнал, также будет зависеть от типа используемого кабеля, длины волны и самой сети. Расстояния варьируются от 550 метров для многомодового типа до 40 километров для одномодового типа кабеля.

    • Безопасность

    С оптоволоконным кабелем вся ваша информация находится в безопасности. Сигнал, передаваемый по оптике, не излучается и его очень сложно перехватить. Если же кабель был поврежден, это легко отследить, так как он будет пропускать свет, что в итоге приведет к остановке всей передачи. Таким образом, если будет совершенна попытка физического взлома вашей оптоволоконной системы, вы обязательно узнаете об этом.

    Стоить отметить, что оптоволоконные сети позволяют разместить всю электронику и оборудования в одном централизованном месте.

    • Надежность и прочность

    Оптоволокно обеспечивает максимально надежную передачу данных. Оптический кабель имеет иммунитет ко множеству факторов, которые легко могут повлиять на работу медного кабеля. Центр жилы сделан из стекла, изолирующего от электрического тока. Оптика полностью устойчива к радио- и электромагнитным излучениям, взаимным помехам, проблемам с сопротивлением и многим другим факторам. Оптоволоконный кабель можно прокладывать рядом с промышленным оборудованием без каких-либо опасений. К тому же, оптоволоконный кабель не так чувствителен к температуре, как медный кабель, и легко может быть размещен в воде.

    • Внешний вид

    Оптоволоконный кабель легче, тоньше и долговечнее в сравнении с медным. Для достижения больших скоростей передачи с использованием медного кабеля потребуется использование лучшего типа кабеля, который обычно более тяжелый, имеет больший диаметр и занимает больше места. Небольшие размеры оптического кабеля делают его более удобным. Также стоит отметить, что провести тестирование оптоволоконного кабеля намного легче, чем медного.

    • Конвертация

    Большое распространение и низкая стоимость медиаконвертеров существенно упрощают передачу данных от медного кабеля к оптоволоконному. Конвертеры обеспечивают бесперебойное соединение с возможностью использования уже существующего оборудования.

    • Сварка кабеля

    Хотя сварка оптоволоконного кабеля на сегодняшний день проходит более трудоемко, чем обжим медного кабеля, при использовании специальных инструментов для сварки этот процесс проходит намного легче.

    • Стоимость

    Стоимость оптоволоконного кабеля, компонентов и оборудования для него постепенно снижается. На данный момент оптоволоконный кабель стоит дороже медного только в рамках короткого промежутка времени. Но при длительном использовании оптоволоконный кабель выйдет дешевле медного. Оптоволокно легче обслуживать, оно требует меньше сетевого оборудования. В дополнении ко всему, в наши дни появляется все больше решений, работающих с оптоволоконным кабелем: начиная от активных оптических кабелей HDMI и заканчивая профессиональными решениями для Digital Signage, подобно ZyPer4K от компании ZeeVee, представленного недавно на выставке NEC’s Solutions Showcase 2015 и позволяющего легко удлинять и переключать сигналы несжатого 4K видео, аудио и управления с использованием стандартной технологии 10Gb Ethernet через оптоволоконный кабель.

    Поделиться: